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PROFESSOR ARCHIL KHARADZE

NIKOLOZ VAKHANIA

Professor Archil Kharadze - prominent mathematician, devoted teacher and distinguished person-
ality - was born in April 21, 1895, in a village of Western Georgia. He attended his elementary school
in the same rural area, and then in 1912 successfully finished, being awarded the Silver medal, his
middle school education at a gymnasium (grammar school) in Tbilisi. His father Kirile Kharadze who
had a strong appreciation towards education but did not have enough funds, still managed to send
his gifted son to Moscow for higher education, and in the same year of 1912 Archil Kharadze became
a student of Department of Physics and Mathematics of the famous MGU, Moscow State University.
That period, like probably all other periods for Moscow State University, was excellent for the history
of this university. Mathematics courses have been conducted by famous mathematicians including
D. Egorov, B. Mlodzeevski, L. Larkin, N. Luzin. Very soon young A. Kharadze became one of the
advanced students at the department. Being in his third year, in 1915, he made his first research and
was marked by the university with official Certificate of Approval for it. He has finished university ed-
ucation by the end of 1916, and was officially graduated, after passing State examinations, in March of
1917 with first grade diploma and an official offer (by recommendation of Prof. D. Egorov) to remain
at the university for preparing to professorship. However, because of the financial shortage, this offer
was not realized, and young mathematician A. Kharadze returned to Tbilisi by fall of the same year
1917. After a few months, in May of 1918, at the age of 23, he started to work at Tbilisi University
which was officially inaugurated just a few months before he became a university lecturer. In 1930 he
was appointed a university professor and the head of Chair of mathematical analysis. In 1975, after
several persistent applications made by him to the rector of the university, he left the position of the
head of chair.

During the long-lasting pedagogical and research career, Prof. A. Kharadze had a considerable
influence on Georgian mathematicians and mathematics due to his excellent many-sided research in
mathematics, his devotion to teaching mathematics, his exemplary personal properties and the general
attitude in diverse problems usually arising in the social life of any community of people.

Starting to teach at the university, A. Kharadze immediately faced two major problems: lack (or
full absence) of mathematical terminology in the Georgian language and full absence of Georgian
text-books in basic mathematical disciplines. Both of these problems caused serious difficulties in
teaching, and required the urgent care. The full responsibility for this direction, as well as for many
others which usually appear in any pioneering undertaking, fell naturally on the “magnificent four” of
the Georgian mathematicians of the first generation Georgi Nikoladze (born in 1888, graduated from
Technological Institute of St. Petersburg in 1913), Andria Razmadze (1889, Moscow State University,
1910), Nikoloz Muskhelishvili (1891, St. Petersburg University, 1915) and the youngest of them Archil
Kharadze (1895, Moscow State University, 1917). They, these four, made the principal contribution
to the establishment of Georgian mathematical terminology significantly improving the possibility to
teach and write mathematics in Georgian. Of course, this job could not be, and by no means was,
a single work done by one attempt. It was a constant care of the just mentioned founders of this
initiative as well as of their followers in the next generations. And I want to mention in this respect
the name of Prof. G. Chogoshvili. The work on terminology is, of course, closely connected with the
writing of textbooks. One of the first Georgian mathematical textbooks was the manual “A theory of
determinants” by A. Kharadze, first issued in 1920. In subsequent years two more editions of this book
and also several editions of the two large textbooks in mathematical analysis and foundations of higher
mathematics for non-mathematical specialities have been published by him and also in cooperation
with Prof. A. Rukhadze. Later, in forties of the last century, Prof. A. Kharadze invited professors
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V. Chelidze, B. Khvedelidze and I. Kartsivadze to work together with him on the project of writing a
fundamental course of mathematical analysis for mathematical specialities. This work lasted several
years and was completed successfully in 1950. Since than this capital book in two volumes had four
editions, and still remains a good source for mathematics students to go deep in the subject.

Now I want to sketch out Prof. A. Kharadze’s mathematical inheritance. I want to give an idea
about scope of his mathematical interest. I cannot speak about technical details, and will just try
to show some areas of his research and give some of his results only for those particular cases which
allow simple formulations.

It is my very pleasant obligation to say here that during the preparation of the mathemati-
cal part of this communication I was essentially using the very interesting small book written by
Prof. I. Kartsivadze and Prof. B. Khvedelidze, and published by Tbilisi State University in 1985 on
the occasion of Prof. A. Kharadze’s 90 anniversary.

1. We start with a qualitative approach to explicit solutions of algebraic equations of third and
fourth order based on what is known as the notion of circulant determinant. A circular determinant is
the determinant of a circular matrix which means a matrix any of whose row, starting from the second
is a circular permutation of the first one. It was noticed by Prof. A. Kharadze that any algebraic
equation of order k = 3 and k = 4 can be written as a circulant determinant ∆k(x), and moreover,
the determinant ∆k(x) can be expressed as the product of linear forms. These two arguments for the
case k = 4 give

∆4(x) =

∣∣∣∣∣∣∣∣
x, a, b, c
c, x, a, b
b, c, x, a
a, b, c, x

∣∣∣∣∣∣∣∣
and ∆4(x) = (x+ a+ b+ c)(x+ ia− b− ic)(x− a+ b− c)(x− ia− b+ ic) with a, b, c depending on
the coefficients of the equation. Therefore, the roots of the equation can be expressed in an explicit
elementary form if this is the case for the dependence of a, b, c on the coefficients which happens for
some classes of the equations. The analysis of reasons why this approach did not work for k > 4 was
given as well.

2. We continue with the introduction of special numerical sequences and closely related with them
polynomials which can be regarded as a generalization of some classical objects. These polynomials
have an independent interest and, besides, they are used by A. Kharadze in other areas of his research,
and we will be talking about that a bit later.

3. Among geometrical investigations of Prof. A. Kharadze we note a contribution to the theory of
generalized evolutes and their applications. He gave an extension of the notion of pedal of plane curve
to the case of two-dimensional surfaces in three dimensional space. These ideas and results he then
successfully used to establish the from of the general solution of some partial differential equations.
A particular case of such equations for three independent variables is the following one

∂3u

∂x3
+
∂3u

∂y3
+
∂3u

∂z3
− 3

∂3u

∂x∂y∂z
= 0.

4. Many interesting and valuable results were obtained by Prof. A. Kharadze in the area of classical
mathematical analysis. We mention a few of them starting with a simple elegant result concerning
the generalization of the well-known Leibnitz’s criterion for alternating signs series.

Let θ be a primitive root of the equation xk = 1, and (an)n≥1 be a decreasing sequence of positive
numbers tending to zero. Then the series ∑

n

anθ
n

is converging and the following inequality for its remainder is valid

|rn| ≤
an

sin π
k

if k is even

and

|rn| ≤
an

2 sin π
2k

if k is odd.
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5. Prof. A. Kharadze gave a condition for convergence of continuous functions which reminds a
criterion for normal systems of holomorphic function. This could be considered as a result of his
significant interest to the Montel’s theory of normal families of functions.

6. It is particularly noteworthy a wide circle of papers by Prof. A. Kharadze on the localization of an
intermediate point ξ in the intermediate value theorems (of Lagrange, Cauchy, Taylor, Rolley). On this
subject the monograph entitled as “On application of intermediate value theorems for polynomials”
was issued by him. This area is closely related with the theory of orthogonal polynomials, and Prof. A.
Kharadze successfully used some generalizations of the sequences of classical orthogonal polynomials
for finding the precise subintervals of localization of intermediate points ξ for diverse families of
polynomials. In this directions some deep generalizations of Chakalov’s and Favard’s results were
obtained. A very special case of an excellent theorem of Prof. A. Kharadze is Chakalov’s theorem
which can be formulated as follows: for the class of polynomials of degree 2n or 2n− 1 (n = 2, 3, . . . )
defined on the interval (−1, 1), intermediate points for Lagrange theorem belong to the inner interval
made up by the endroots of the Legendre polynomial of order n and this is the smallest interval
with this property. For example, for any polynomial of the third order (n = 2) these bounds are
− 1√

3
≤ ξ ≤ 1√

3
(note that 1√

3
and − 1√

3
are the only two zeros and therefore are the endroots of the

Legendre polynomial P2(x) = 1
2 (3x2 − 1), −1 ≤ x ≤ 1).

7. Another circle of papers by Prof. A. Kharadze deals with algebraic and analytical theory of
polynomials in one and several variables. He studied new problems in the theory of classical orthogonal
polynomials and also found some notable applications of results obtained by him in this area to diverse
problems of mathematical analysis. We will mention here only two of them.

(i) It is known that every sequence of orthogonal polynomials is a Hamel basis in the linear space
of polynomials. Choosing for Hamel basis generalized orthogonal polynomials introduced by Prof.
A. Kharadze himself, he found areas for all zeros of polynomials in the complex plane. For exam-
ple, if (Hn) denotes the sequence of generalized Hermitian polynomials, and polynomial of degree is
represented as

ϕ(z) =

m∑
n=0

ankHnk(z), amk 6= 0,

then all zeros of the function ϕ are situated in the area of the complex plane described by the following
inequality

rk| sin kα| ≤ bk
(

1 +
M

|amk|

)
,

where z = reia, M = max |ank| (n = 0, 1, . . . ,m − 1) and bk are real (positive) numbers depending
explicitly on the coefficients of the expansion of ϕ .

One of the consequences of the general theorem of Kharadze in this direction is the following result
first proved by P. Turan: if is an even polynomial on the complex plane, and its representation by
Hermitian polynomials is

f(z) =

m∑
k=0

c2kH2k(z), c2m 6= 0,

then all roots of f are situated in the area described by the inequality

|xy| ≤ 5

4

(
1 +

M

|c2m|

)
, M = max |c2k|, k = 0, 1, . . . ,m− 1, x+ iy = z.

(ii) In the analytic theory of polynomials it is known Grace phenomenon meaning the following:
any linear relation between the coefficients of a polynomial characterizes in a certain sense the area of
the complex plane where all zeros of the derivative of the polynomial are situated. Several refinements
of this classical result belong to Prof. A. Kharadze. One of them is the following: if a polynomial of
degree n satisfies the condition

f(i)− f(0) = i[f(−i)− f(0)],

then the derivative of f has at least one root in the circle with radius ctg π
4n and center at zero.

Now let me finish my very schematic account on the mathematical inheritance of Prof. A. Kharadze,
and go back to his personality. I could speak much about Archil Kharadze, his very non-trivial
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personality, his moral self-restriction (Solzhenitsin’s expression). Yes, I could speak on this matter as
much as my English would let me go on. But now I will be concise and try to express my attitude in
short.

In some occasional cases professional communities have their spiritual leaders. Spiritual leaders
usually do not have any official positions on top levels of the administrative staircase, neither are
officially elected for the leadership. Unlike the case of official elections, when we sometimes make
mistakes, in choosing the spiritual leaders mistakes are very rare, if at all. Spiritual leaders gain only
new heavy duties and no benefits. And still, it is the highest moral position in the society. There is no
sufficient condition for getting it but there are many necessary conditions that can be groupped around
professional level, devotion and ability to serve public interests, spotless honesty. No meetings, no
negotiations, no debates are needed to decide the choice. Guration date exists since no inauguration
exists at all for such cases. The decision matures gradually, bit by bit to arrive to the full consensus.
People believe that spiritual leaders are the conscience of their communities. Professor Archil Kharadze
undoubtedly was the conscience and the honour of the Georgian mathematical community for many
years. I am fully aware that no one from our mathematical community, in past years or afterwards,
would question this statement.
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ON AN APPLICATION OF POWER INCREASING SEQUENCES

HÜSEYİN BOR

Abstract. In this paper we prove a general new summability factor theorem for infinite series

involving quasi-power increasing sequences. Some new results are also deduced.

1. Introduction

A positive sequence (Xn) is said to be a quasi-σ-power increasing sequence if there exists a constant
K = K(σ,X) ≥ 1 such that KnσXn ≥ mσXm for all n ≥ m ≥ 1 (see [18]). For any sequence (λn) we
write that ∆λn = λn − λn+1. Let

∑
an be a given infinite series with partial sums (sn). We denote

by uαn and tαn the nth Cesàro means of order α, α > −1, of the sequences (sn) and (nan), respectively,
that is (see [13]),

uαn =
1

Aαn

n∑
v=0

Aα−1n−vsv and tαn =
1

Aαn

n∑
v=1

Aα−1n−vvav, (tn
1 = tn),

where

Aαn =
(α+ 1)(α+ 2) · · · (α+ n)

n!
= O(nα), Aα−n = 0 for n > 0.

A series
∑
an is said to be summable |C,α; δ|k, k ≥ 1 and δ ≥ 0, if (see [15])

∞∑
n=1

nδk+k−1|uαn − uαn−1|k =

∞∑
n=1

nδk−1|tαn|k <∞.

If we set δ=0, then we get the |C,α|k summability (see [14]). Let (pn) be a sequence of positive
numbers such that

Pn =

n∑
v=0

pv →∞ as n→∞, (P−i = p−i = 0, i ≥ 1).

The sequence-to-sequence transformation

vn =
1

Pn

n∑
v=0

pvsv

defines the sequence (vn) of the Riesz mean, or simply, the (N̄ , pn) mean of the sequence (sn), generated
by the sequence of coefficients (pn) (see [16]). The series

∑
an is said to be the |N̄ , pn; δ|k summable,

k ≥ 1 and δ ≥ 0, if (see [7])
∞∑
n=1

(Pn/pn)δk+k−1|vn − vn−1|k <∞.

If we set δ = 0, then we obtain the |N̄ , pn|k summability (see [1]). If we take pn = 1 for all n, then we
get the |C, 1; δ|k summability. Finally, if we set δ = 0 and k = 1, then we get the |N̄ , pn| summability
(see [20]).

2020 Mathematics Subject Classification. 26D15, 40D15, 40F05.
Key words and phrases. Absolute summability; Summability factors; Riesz mean; Power increasing sequences;

Hölder’s inequality; Minkowski’s inequality.
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2. Known Result

Several theorems have been proved dealing with the |N̄ , pn; δ|k summability factors of infinite series
(see [3, 5–12,17]). Among them, in [10], the following theorem has been proved.

Theorem A. Let (Xn) be a quasi-σ-power increasing sequence for some σ (0 < σ < 1). Suppose that
there exist the sequences (βn) and (λn) such that

|∆λn| ≤ βn, (1)

βn → 0 as n→∞, (2)
∞∑
n=1

n|∆βn|Xn <∞, (3)

|λn|Xn = O(1). (4)

If
n∑
v=1

(Pv
pv

)δk |sv|k
vXk−1

v

= O(Xn) as n→∞ (5)

and (pn) is a sequence such that

Pn = O(npn), (6)

Pn∆pn = O(pnpn+1), (7)

m+1∑
n=v+1

(Pn
pn

)δk−1 1

Pn−1
= O

((Pv
pv

)δk 1

Pv

)
as m→∞, (8)

hold, then the series
∑∞
n=1 an

Pnλn

npn
is the |N̄ , pn; δ|k summable, k ≥ 1 and 0 ≤ δ < 1/k.

3. The Main Result

The aim of this paper is to prove Theorem A under weaker conditions. Now, we prove the following

Theorem. Let (Xn) be a quasi-σ-power increasing sequence for some σ (0 < σ < 1). If the conditions
(1), (2), (3), (4), (6), (7), (8) and

n∑
v=1

(
Pv
pv

)δk |tv|k
vXk−1

v

= O(Xn) as n→∞ (9)

hold, then the series
∑∞
n=1 an

Pnλn

npn
is the |N̄ , pn; δ|k summable, k ≥ 1 and 0 ≤ δ < 1/k.

Remark. It should be noted that the condition (5) implies the condition (9) but the converse is need
not be true (see [4, 19]).

To prove our theorem, we need the following lemmas.

Lemma 1 ([18]). Under the conditions on (Xn), (βn) and (λn) as as expressed in the statement of
the theorem, we have the following:

nXnβn = O(1),
∞∑
n=1

βnXn <∞. (10)

Lemma 2 ([2]). If the conditions (6) and (7) are satisfied, then

∆

(
Pn
n2pn

)
= O

(
1

n2

)
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4. Proof of the theorem

Let (Tn) be the sequence of (N̄ , pn) mean of the series
∑∞
n=1

anPnλn

npn
. Then, by the definition, we

have

Tn =
1

Pn

n∑
v=1

pv

v∑
r=1

arPrλr
rpr

=
1

Pn

n∑
v=1

(Pn − Pv−1)
avPvλv
vpv

,

and hence

Tn − Tn−1 =
pn

PnPn−1

n∑
v=1

Pv−1Pvavλv
vpv

, n ≥ 1, (P−1 = 0).

Using Abel’s transformation, we get

Tn − Tn−1 =
pn

PnPn−1

n−1∑
v=1

∆

(
Pv−1Pvλv
v2pv

) v∑
r=1

rar +
λn
n2

n∑
v=1

vav

=
pn

PnPn−1

n−1∑
v=1

Pv
pv

(v + 1)tvpv
λv
v2

+
pn

PnPn−1

n−1∑
v=1

PvPv∆λv(v + 1)
tv
v2pv

− pn
PnPn−1

n−1∑
v=1

Pvλv+1(v + 1)tv∆(Pv/v
2pv)

+λntn(n+ 1)/n2 = Tn,1 + Tn,2 + Tn,3 + Tn,4.

To complete the proof of the theorem, by Minkowski’s inequality, it is sufficient to show that

∞∑
n=1

(
Pn
pn

)δk+k−1
|Tn,r|k <∞, for r = 1, 2, 3, 4.

Now, applying Hölder’s inequality, we have

m+1∑
n=2

(Pn
pn

)δk+k−1
|Tn,1|k =O(1)

m+1∑
n=2

(Pn
pn

)δk−1 1

P kn−1

{ n−1∑
v=1

Pv
pv
pv|tv||λv|

1

v

}k

=O(1)

m+1∑
n=2

(Pn
pn

)δk−1 1

Pn−1

n−1∑
v=1

(Pv
pv

)k
pv|tv|k|λv|k

1

vk

×
{

1

Pn−1

n−1∑
v=1

pv

}k−1

=O(1)

m∑
v=1

(Pv
pv

)k
pv|tv|k|λv|k

1

vk

m+1∑
n=v+1

(Pn
pn

)δk−1 1

Pn−1

=O(1)

m∑
v=1

(Pv
pv

)k
|λv|k−1|λv|pv|tv|k

1

vk
1

Pv

(Pv
pv

)δk
=O(1)

m∑
v=1

(Pv
pv

)k−1
|λv|

( 1

Xv

)k−1
|tv|k

1

vk

(Pv
pv

)δk
=O(1)

m∑
v=1

(Pv
pv

)δk
vk−1

1

vk

( 1

Xv

)k−1
|λv||tv|k

=O(1)

m∑
v=1

|λv|
(Pv
pv

)δk |tv|k
vXv

k−1

=O(1)

m−1∑
v=1

∆|λv|
v∑
r=1

(Pr
pr

)δk |tr|k
rXr

k−1
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+O(1)|λm|
m∑
v=1

(Pv
pv

)δk |tv|k
vXv

k−1

=O(1)

m−1∑
v=1

|∆λv|Xv +O(1)|λm|Xm

=O(1)

m−1∑
v=1

βvXv +O(1)|λm|Xm = O(1) as m→∞,

by the hypotheses of the theorem and Lemma 1. Now, using (6), we obtain

m+1∑
n=2

(Pn
pn

)δk+k−1
|Tn,2|k =O(1)

m+1∑
n=2

(Pn
pn

)δk−1 1

P kn−1

{ n−1∑
v=1

Pv
pv
pv|∆λv||tv|

}k

=O(1)

m+1∑
n=2

(Pn
pn

)δk−1 1

Pn−1

n−1∑
v=1

(Pv
pv

)k
pv|∆λv|k|tv|k

×
{

1

Pn−1

n−1∑
v=1

pv

}k−1

=O(1)

m∑
v=1

(Pv
pv

)k
pv(βv)

k|tv|k
m+1∑
n=v+1

(Pn
pn

)δk−1 1

Pn−1

=O(1)

m∑
v=1

(Pv
pv

)δk(Pv
pv

)k−1
(βv)

k|tv|k

=O(1)

m∑
v=1

(Pv
pv

)δk
vk−1(βv)

k−1(βv)|tv|k

=O(1)

m∑
v=1

vβv

(Pv
pv

)δk |tv|k
vXv

k−1

=O(1)

m−1∑
v=1

∆(vβv)

v∑
r=1

(Pr
pr

)δk |tr|k
rXr

k−1 +O(1)mβm

m∑
v=1

(Pv
pv

)δk |tv|k
vXv

k−1

=O(1)

m−1∑
v=1

v|∆βv|Xv +O(1)

m−1∑
v=1

βvXv +O(1)mβmXm

=O(1) as m→∞,
by the hypotheses of the theorem and Lemma 1. Again, using Lemma 1 and Lemma 2, as in Tn,1, we
have

m+1∑
n=2

(
Pn
pn

)δk+k−1
|Tn,3|k = O(1) as m→∞.

Finally, as in Tn,1, we have
m∑
n=1

(Pn
pn

)δk+k−1
|Tn,4|k =O(1)

m∑
n=1

(Pn
pn

)δk(Pn
pn

)k−1(n+ 1

n

)k 1

nk
|λn|k|tn|k

=O(1)

m∑
n=1

(Pn
pn

)δk
nk−1

1

nk
|λn|k−1|λn||tn|k

=O(1)

m∑
n=1

|λn|
(Pn
pn

)δk |tn|k
nXn

k−1 = O(1) as m→∞.

This completes the proof of the theorem. If we set δ=0, then we have a result dealing with |N̄ , pn|k
summability factors of infinite series. Also, if we take pn = 1 for all n, then we obtain a new result
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concerning the |C, 1; δ|k summability factors of infinite series. Finally, if we set δ = 0 and k = 1, then
we get a result related to the |N̄ , pn| summability factors of infinite series.
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A SYMMETRIZATION IN π-REGULAR RINGS

PETER V. DANCHEV

Abstract. We introduce and study the so-called (m,n)-regularly nil clean rings by showing that
these rings are, in fact, a non-trivial generalization of the classical π-regular rings. Our results

somewhat supply a recent publication of the author in Turk. J. Math. (2019) and some recent

assertions from an own draft (2020).

1. Introduction and Background

Throughout this paper, all rings are assumed to be associative and unital. Our standard terminology
and notations are in the most part in agreement with those in [8,9]. Specifically, we let U(R) denote
the set of all units in R, Id(R) the set of all idempotents in R, Nil(R) the set of all nilpotents in R,
J(R) the Jacobson radical of R, and C(R) the center of R. About some of the more specific notions,
we shall state them in detail below.

Let us recollect that a ring R is called von Neumann regular or just regular for short if, for every
a ∈ R, there is b ∈ R such that a = aba. If, in addition, b ∈ U(R), the ring R is said to be unit-regular.
If, however, b ∈ Id(R), we surprisingly arrive at the so-called Boolean rings in which every element
is an idempotent. Indeed, it is pretty easy to see that U(R) = {1} whence R is reduced (that is, it
does not possess any non-trivial nilpotent) and thus abelian (that is, each its idempotent is central).
Therefore, as both b, ab ∈ Id(R), it must be a = a2b = ab, and hence a = a.a = a2, as required.

In that direction, we recall also that a ring R is called π-regular if, for each a ∈ R, there are
n ∈ N and b ∈ R, both depending on a, such that an = anban; if b ∈ U(R), we say that R is unit
π-regular. In case b = dn for some d ∈ R and, possibly, n ≥ 2, R is then called perfectly regular,
as well as if d ∈ U(R), we call R perfectly unit-regular. In the same vein, we recall that a ring R is
said to be strongly π-regular if, for each a ∈ R, there are n ∈ N and c ∈ R, both depending on a,
with the property that an = an+1c = can+1 or, equivalently, an = a2ncn. This leads to the fact that
any strongly π-regular ring is perfectly unit-regular and the latter one is obviously unit π-regular. It
was established in [1] that strongly π-regular rings are always π-regular, whereas the converse is not
generally true; however, it holds for abelian rings and for rings with a bounded index of nilpotence.
Another interesting class of rings is the class of the so-termed π-boolean rings that are rings R for
which, for every a ∈ R, there is i ∈ N with ai = ai+1. These are, certainly, strongly π-regular by
taking c = 1. Likewise, it is a principal fact that strongly π-regular rings are unit-regular, provided
they are regular.

It is worthwhile noticing that π-regularity was successfully generalized to some non-elementary ways
in [6], [7] and [3], [4], respectively. In this connection, as a non-trivial extension of the aforementioned
π-regular rings, it was recently defined in [4] the class of the so-called regularly nil clean rings as those
rings R having the property that for any r ∈ R, there exists e ∈ Rr ∩ Id(R) with r(1 − e) ∈ Nil(R)
(or, equivalently, (1− e)r ∈ Nil(R). In [4, Proposition 1.3] is given the following left-right symmetric
property, namely that there exists f ∈ rR with the property r(1− f) ∈ Nil(R) (or, in an equivalent
form, (1 − f)r ∈ Nil(R). Likewise, it is proved in [4, Proposition 2.1] that π-regular rings are by
themselves regularly nil clean.

2020 Mathematics Subject Classification. 16U99, 16E50, 16W10, 13B99.
Key words and phrases. π-Regular rings; Regularly nil clean rings; D-Regularly nil clean rings; (m,n)-Regularly nil
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On the other hand, referring to [5], a ring R is said to be double regularly nil clean or just D-regularly
nil clean for short if, for each a ∈ R, there exists e ∈ (aRa)∩ Id(R) such that a(1− e) ∈ Nil(R) (and
hence, (1− e)a ∈ Nil(R)).

Certainly, the requirement e ∈ (aRa) ∩ Id(R) is obviously equivalent to the relation e ∈ (aR) ∩
(Ra) ∩ Id(R) as the idempotent e ∈ aR ∩Ra makes sense that e = e.e ∈ aRa.

Apparently, D-regularly nil clean rings are always regularly nil clean. Reformulating [4, Problem
3.1], an intriguing question is of whether or not the properties of being regularly nil clean and D-
regularly nil clean are independent of each other, i.e., does there exist a regularly nil clean ring that
is not D-regularly nil clean?

By what we have discussed so far, our further work is mainly motivated by the following new and
more general concept:

Definition 1.1. A ring R is called (m,n)-regularly nil clean if, for any a ∈ R, there exist two
nonnegative integers m,n and an idempotent e ∈ amRan such that am(1− e)an ∈ Nil(R).

It is clear that the condition am(1 − e)an ∈ Nil(R) is equivalent to am+n(1 − e) ∈ Nil(R), that
is, (1 − e)am+n ∈ Nil(R) as for any two elements x, y of a ring R it follows that xy ∈ Nil(R) ⇐⇒
yx ∈ Nil(R).

Moreover, if m = 0 and n ≥ 1, we just obtain the R-version (marked for right), while if m ≥ 1 and
n = 0, we obtain the L-version (marked for left), which both versions were discussed above.

2. Preliminary and Main Results

We begin here with the following technicality, which could be useful for further applications.

Lemma 2.1. Suppose that R is a ring and m,n are nonnegative integers. Then R is (m,n)-regularly
nil clean, if and only if R/J(R) is (m,n)-regularly nil clean and J(R) is nil.

Proof. Before we proceed to proving this assertion, we need the following folklore fact:
If P is a ring with a nil-ideal I and if d ∈ P with d + I ∈ Id(P/I), then d + I = e + I for some

e ∈ Id(P ) ∩ dPd such that de = ed.
The left-to-right implication, being valid in the same manner as in [4, Theorem 2.9], we will deal with

the right-to-left one. So, given an arbitrary element a of R, there exists b+J(R) ∈ Id(R/J(R))∩ (a+
J(R))(R/J(R))(a+J(R)) with (a+J(R))(1+J(R)−(b+J(R)) ∈ Nil(R/J(R)). Consequently, bearing
in mind the above folklore fact, there is r ∈ R such that b+J(R) = (a+J(R))(r+J(R))(a+J(R)) =
ara+ J(R) = e+ J(R) for some e ∈ Id(R) ∩ (ara)R(ara) ⊆ Id(R) ∩ aRa. Furthermore,

(a+ J(R))(1 + J(R)− (e+ J(R))) = (a+ J(R))(1− e+ J(R))

= a(1− e) + J(R) ∈ Nil(R/J(R))

and, therefore, there exists m ∈ N having the property that [a(1−e)]m ∈ J(R) ⊆ Nil(R). This means
that a(1− e) ∈ Nil(R), as required. �

Although it has been long ago known that the center of an exchange ring need not to be again
exchange, the following statement is somewhat curious even in the light of [4, Proposition 2.7].

Proposition 2.2. The center of an (m,n)-regularly nil clean ring is again an (m,n)-regularly nil
clean ring.

Proof. Letting R be such a ring and given c ∈ C(R), we can write that (c(1− e))m = cm(1− e) = 0
for some e ∈ Id(R)∩ cRc = c2R. What suffices to prove is that e ∈ C(R). To do that, for all r ∈ R, it
must be that er(1− e) ∈ cmR(1− e) = Rcm(1− e) = 0 as e ∈ c2R implies at once that e = em ∈ cmR.
Thus er = ere and, by a reason of similarity, we also have re = ere. Hence, it now immediately
follows that er = re, proving the claim about the centrality of e.

What remains to be shown is just that e ∈ cC(R)c = c2C(R). Indeed, write e = c2b for some
b ∈ R. This forces that e = c2be = c2y, where y = be = eb as e is central. We claim that y ∈ C(R),
as needed. In fact, for any z ∈ R, one derives that yz(1 − e) = (1 − e)yz = (1 − e)ebz = 0 and that
(1 − e)zy = zy(1 − e) = zbe(1 − e) = 0, because 1 − e ∈ C(R), which tells us that yz = yze and
zy = ezy. Further, yz = yzc2y = c2yzy and zy = c2yzy and, finally, yz = zy, as claimed. �
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It was proved in [4, Proposition 2.6] that the corner subring of any regularly nil clean ring is again
regularly nil clean as well as in [5] the same claim was proved for D-regularly nil clean ring. The next
assertion parallels to these two statements.

Proposition 2.3. Given two integers m,n ≥ 0, if R is an (m,n)-regularly nil clean ring, then so is
the corner ring eRe for any e ∈ Id(R). In particular, if Mn(R) is (m,n)-regularly nil clean, then so
does R.

Proof. Choose an arbitrary element ere ∈ eRe for some r ∈ R. Since ere ∈ R, it follows that there is
an idempotent f in R with f ∈ (ere)R(ere) such that (1− f)ere ∈ Nil(R). But this could be written
as ere − fere = (e − f)ere = (e − fe)ere = q ∈ Nil(R). Thus (e − efe)ere = eq = eqe ∈ Nil(eRe)
with efe ∈ Id(eRe) ∩ (ere)(eRe)(ere) = Id(eRe) ∩ (ere)R(ere), because efe = f and qe = q so that
eq ∈ Nil(R), as expected.

The second part-half appears to be a direct consequence of the first part-half as R is always
isomorphic to a corner subring of Mn(R). �

An important, but seemingly rather difficult problem is the reciprocal implication of the last asser-
tion, namely, if both eRe and (1− e)R(1− e) are (m,n)-regularly nil clean rings, does the same hold
for R, too?

Let us now denote by Tn(R) the upper triangular matrix ring over a ring R, where n runs over N.
The next result sheds some more light on the structure of this ring.

Proposition 2.4. The ring Tn(R) is (m,n)-regularly nil clean, if and only if the ring R is (m,n)-
regularly nil clean.

Proof. It is well known that
Tn(R)/I ∼= R× · · · ×R︸ ︷︷ ︸

n−times

for a proper nil-ideal I of Tn(R). So, the claim follows at once by using the standard arguments,
leaving the check to the interested readers. �

The next two tricky technicalities are pivotal.

Lemma 2.5. If R is a ring and x, y ∈ R with x = xyx, then for the element y′ := yxy the following
two relations

(∗) x = xy′x;
(∗∗) y′ = y′xy′

are fulfilled.

Proof. About the first relationship, xy′x = x(yxy)x = (xyx)yx = xyx. As for the second one,
y′xy′ = (yxy)x(yxy) = y(xyx)yxy = y(xyx)y = yxy = y′, as promised. �

It is worthwhile noticing that in [4] it was showed that if a is a π-regular element, that is, an

is regular for some n ∈ N, then a is regularly nil clean, too. Nevertheless, this pleasant implication
perhaps cannot be happen in the situation of D-regular nil cleanness. Specifically, the following critical
assertion is valid:

Proposition 2.6. If R is a ring having an element a such that an is regular for some n ≥ 2, then a
is (1, 1)-regularly nil clean of index not greater than n.

Proof. Writing an = anban for some existing b ∈ R, then with Lemma 2.5 at hand, we can also write
that b = banb. Indeed, setting b′ = banb, by consulting with the cited lemma we will have an = anb′an

and b′ = b′anb′, so that without loss of generality, we could replace b′ via b. Furthermore, letting
e := aban−1, we easily check that e ∈ Id(R) ∩ (aRa) – by a way of similarity we may also consider
the idempotent f = an−1ba. By a direct inspection, one verifies that [a(1 − e)a]n = 0. In fact, first
of all, one finds that a(1 − e)a = a2 − a2ban and that [a(1 − e)a]2 = a4 − a4ban. So, by induction,
[a(1− e)a]n = a2n − a2nban = 0, as expected. �

We are now ready to proceed by proving with the following
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Theorem 2.7. All π-regular rings are (1, 1)-regularly nil clean.

Proof. For such a ring R, letting r ∈ R, if r2 is a regular element, we are set applying Proposition 2.6.
However, if not, since r2 ∈ R, there is an integer k > 1 such that (r2)k = r2k is a regular element. As
2k > 2, again Proposition 2.6 is applicable to conclude the claim. �

Now, the same idea as that in [5] can be adopted to get the following statement which could be of
independent interest, as well.

Lemma 2.8. Let V be a vector space over an arbitrary field K, let R = EndK(V ) whose elements
are being written to the left of elements of V , and let a ∈ R. Then there exists an idempotent e ∈ aRa
such that (a(1− e)a)2 = 0.

We are now in a position to show the existence of a concrete construction of an (1, 1)-regularly nil
clean ring that is surely not π-regular.

Example 2.9. For any pair of natural numbers (m,n), there exists an (m,n)-regularly nil clean ring
which is not π-regular.

Proof. We will restrict our attention to the pair (1, 1) as the argumentation follows by analogy with the
situation in [4] bearing in mind Lemma 2.8. The general construction can be exhibited by induction,
but it is a rather technical matter and so we leave all details to the interested reader. �

In regard to our considerations alluded to above, we state the following

Problem 2.10. What is the relationship between D-regularly nil clean rings and (m,n)-regularly nil
clean rings? Are they independent to each other or not?

In the case where the elements a and e from Definition 1.1 commute, these two notions are deducible
one of other, i.e., they coincide.

Another question of interest could be the following: It is long ago known that a ring R is exchange
if, for any r ∈ R, there exists e ∈ Id(R)∩rR such that 1−e ∈ (1−r)R. This, curiously, is equivalent to
the existence of an integer k > 1 with the properties that e ∈ rkRrk and 1−e ∈ (1−r)kR(1−r)k. This
can be directly proved observing that both elements rk and (1− r)k are commuting and co-maximal.

In that aspect, we define a ring R to be strongly π-exchange if, for every x ∈ R, there exists an
idempotent e ∈ xnRn for some natural n > 1 such that 1 − e ∈ (1 − x)nRn, and we define R to be
π-exchange if, for every x ∈ R, there exists an idempotent e ∈ exnRn for some natural n > 1 such
that 1− e ∈ (1− e)(1−x)nRn, where Rn = {rn | r ∈ R} is a subset of R consisting of all n-th powers
of elements from R.

So, we come to our final problem.

Problem 2.11. Determine the structure of strongly π-exchange and π-exchange rings.

In view of [2], there are rather unexpected and non-trivial examples of strongly π-exchange rings,
so that the posed question seems to be hard. Indeed, in virtue of our discussion in the introductional
section, are perfectly regular rings always π-exchange?
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BOUNDARY VALUE PROBLEMS OF THERMOELASTIC DIFFUSION THEORY

WITH MICROTEMPERATURES AND MICROCONCENTRATIONS

LEVAN GIORGASHVILI∗ AND SHOTA ZAZASHVILI

Abstract. The paper deals with the linear theory of thermoelastic diffusion for elastic isotropic
and homogeneous materials with microtempeatures and microconcetrations. For the system of the

corresponding differential equations of pseudo-oscillations the fundamental matrix is constructed

explicitly in terms of elementary functions. With the help of Green’s identities the general integral
representation formula of solutions is derived by means of generalized layer and Newtonian potentials.

The basic Dirichlet and Neumann type boundary value problems are formulated in appropriate func-
tion spaces and the uniqueness theorems are proved. The existence theorems for classical solutions

are established by using the potential method.

1. Introduction

Construction of a refined mathematical model of continuum mechanics with regard for different
physical fields and their investigation is a very important problem from the theoretical and practical
points of view, due to the rapidly increasing use of composite materials in modern technological
processes, as well as in geology, biology, medicine, etc.

One such refined model, a thermoelastic diffusion theory with microtemperatures and microcon-
centrations, is proposed by M. Aouadi, M. Ciarletta, and V, Tibullo [1]. In this paper, the dynamical
problems for a thermoelastic material with diffusion, whose microelements are assumed to possess mi-
crotemperatures and microconcentrations, are considered. The constitutive and field equations of the
thermodynamic for the homogeneous and isotropic bodies are derived. Using the semigroup theory for
linear operators, they show that a wide class of mixed problems with appropriate initial and boundary
conditions are well posed, and the asymptotic behavior of solutions is established for a sufficiently
large time parameter.

Recently, in [2], a linear dynamical problem involving a thermoelastic material with diffusion, whose
microelements are assumed to possess microtemperatures and microconcentrations, has been analyzed.
The problem is studied from the numerical point of view, introducing a fully discrete approximation
by using the finite element method and the implicit Euler scheme. A discrete stability property is
established and some a priori error estimates are obtained.

The system of differential equations of thermodynamic diffusion linear theory for isotropic homoge-
neous elastic materials with microtemperatures and microconcentrations with respect to the displace-
ment vector, microconcentration vector, microtemperature vector, chemical potential function and
temperature function, represents a fully coupled complex system of second order partial differential
equations (see [1]).

If the physical characteristics involved in the dynamical system of differential equations are time
harmonic dependent (i.e., they are represented as the product of the time dependent exponential
function exp(−iσt) with a complex parameter σ = σ1 + iσ2, σ1 ∈ R, σ2 > 0, and a function of the
spatial variable x ∈ R3), then we have the so- called system of pseudo-oscillation equations. The
corresponding matrix differential operator is strongly elliptic, formally non-self-adjoint operator with
constant coefficients.

2020 Mathematics Subject Classification. 31B10, 47G10, 47G30, 74F05, 74A15.
Key words and phrases. Microtemperatures; Microconcentrations; Thermoelastic diffusion; Potential theory; Integral

equations.
∗Corresponding author.
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The present paper is devoted to the investigation of the basic boundary value problems for the
system of pseudo-oscillation equations for homogeneous isotropic materials by using the potential
method.

To this end, we construct the matrix of fundamental solutions explicitly in terms of elementary
functions for the pseudo-oscillation equations and investigate mapping properties of the corresponding
volume and layer potential operators.

Using the approaches developed in [5,6,8,12,15], with the help of the potential method we reduce
the Dirichlet and Neumann type boundary value problems to the corresponding system of singular
integral equations and prove the existence theorems in the space of regular vector functions.

2. Constitutive Relations and Basic Differential Equations

Denote by R3 the three-dimensional Euclidean space and let Ω+ ⊂ R3 be a bounded domain with
boundary S := ∂Ω+, Ω+ = Ω+ ∪ S. Further, let Ω− = R3\Ω+. We assume that Ω ∈ {Ω+, Ω−}
is filled with a thermoelastic diffusion isotropic and homogeneous material with microtemperatures
and microconcentration. Denote by u = (u1, u2, u3)>, C = (C1, C2, C3)>, and T = (T1, T2, T3)> the
displacement vector, the microconcentration vector and the microtemperatures vector, respectively.
By P we denote the chemical potential of material and by ϑ the temperature, measured from fixed
absolute temperature T0. We assume that T0 is a given positive constant. The symbol (·)> denotes
transposition.

Denote by tij , ηij , qij , ηj , and qj the stress tensor, the first mass diffusion flux moment tensor, the
first heat flux moment tensor, the flux vector of mass diffusion, and the heat flux vector, respectively.
By C∗, S∗, σ∗i , ζ

∗
i , Ω∗i , and ε∗i we denote the concentration of the diffusive material, the microentropy,

the micromass, the microheat flux average, the first moment of mass diffusion, and the first moment
of energy vector, respectively.

In the case of an isotropic and homogeneous thermoelastic diffusion material, with microtempera-
tures and microconcentration, the constitutive equations read as follows [1]

tij = tij(U) := µ (∂j ui + ∂i uj) + δij (λ0 div u− γ2 P − γ1 ϑ), (2.1)

ηij = ηij(U) := −h4 δij divC − h5 ∂j Ci − h6 ∂i Cj , (2.2)

qij = qij(U) := −k4 δij div T − k5 ∂j Ti − k6 ∂i Tj , (2.3)

ηi = ηi(U) := h1 Ci + h ∂i P , (2.4)

qi = qi(U) := k1 Ti + k ∂i ϑ, (2.5)

ρS∗(U) := γ1 div u+ cϑ+ κ P,
C∗(U) := γ2 div u+ κ ϑ+mP,

σ∗i (U) := (h− h3) ∂i P + (h1 − h2)Ci ,

ζ∗i (U) := (k − k3) ∂i ϑ+ (k1 − k2)Ti ,

ρΩ∗i (U) := −m1 Ci − κ1 Ti ,

ρ ε∗i (U) := −κ1 Ci − c1 Ti ,
where U = (u,C, T, P, ϑ)>, δij is the Kronecker delta, ∂ = (∂1, ∂2, ∂3), ∂j = ∂/∂xj , j = 1, 2, 3;

λ0 = λ− β2
2

%
, γ1 = β1 +

ωβ2

%
, γ2 =

β2

%
,

λ and µ are Lame’s constants, β1 = (3λ + 2µ)αt, β2 = (3λ + 2µ)αc, where αt is the coeffi-
cient of linear thermal expansion and αc is the coefficient of linear diffusion expansion; ω and %
are the measures of thermodiffusion and diffusive effects, respectively; ρ is the mass density and
h, k, hj , kj , j = 1, 2, . . . , 6, are the thermoelastic material constants;

c =
ρcE
T0

+
ω2

%
, κ =

ω

%
, m =

1

%
,

where cE is the specific heat at constant strain; c1 and m1 are the constants of microthermal and
microdiffusion conductivity, respectively; κ1 is measure of microthermodiffusion.
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In the sequel, we assume that the above constitutive coefficients satisfy the following assumptions [1]

ρ > 0, µ > 0, 3λ0 + 2µ > 0, c > 0, c1 > 0, cm− κ2 > 0, c1m1 − κ2
1 > 0,

h > 0, 3h4 + h5 + h6 ≥ 0, h6 ± h5 ≥ 0, 4hh2 − (h1 + h3)2 ≥ 0,

k > 0, 3k4 + k5 + k6 ≥ 0, k6 ± k5 ≥ 0, 4T0 k k2 − ( k1 + T0 k3)2 ≥ 0.

(2.6)

The linear field equations of dynamics of the thermoelasticity diffusion theory with microtempera-
tures and microconcentrations of homogeneous and isotropic bodies have the form [1]

µ∆u(x, t) + (λ0 + µ) grad div u(x, t)− γ2 gradP (x, t)− γ1 gradϑ(x, t) + ρF (x, t) = ρ
∂2u(x, t)

∂t2
,

h6∆C(x, t) + (h4 + h5) grad divC(x, t)− h2C(x, t)− h3 gradP (x, t) = m1
∂C(x, t)

∂t
+ κ1

∂T (x, t)

∂t
,

k6∆T (x, t) + (k4 + k5) grad div T (x, t)− k2T (x, t)− k3 grad ϑ(x, t)− ρG(x, t)

= κ1
∂C(x, t)

∂t
+ c1

∂T (x, t)

∂t
,

(2.7)

− γ2
∂

∂t
div u(x, t) + h1 divC(x, t) + h∆P (x, t) = m

∂P (x, t)

∂t
+ κ

∂ϑ(x, t)

∂t
,

− γ1
∂

∂t
div u(x, t) +

k1

T0
div T (x, t) +

k

T0
∆ϑ(x, t) +

ρ

T0
s(x, t) = κ

∂P (x, t)

∂t
+ c

∂ϑ(x, t)

∂t
,

where ∆ is the Laplace operator, t is the time variable, F = (F1, F2, F3)> is the body force vector per
unit mass, G = (G1, G2, G3)> is the first moment of the heat source vector, s is the heat source per
unit mass.

If all the vector and scalar functions in (2.7) are harmonic time dependent, i.e.,

u(x, t) =u(x) exp{−i tσ}, C(x, t) = C(x) exp{−i tσ}, T (x, t) = T (x) exp{−i tσ},
P (x, t) =P (x) exp{−i tσ}, ϑ(x, t) = ϑ(x) exp{−i tσ},
F (x, t) =F (x) exp{−i tσ}, G(x, t) = G(x) exp{−i tσ}, s(x, t) = s(x) exp{−i tσ},

with σ ∈ R and i =
√
−1, we obtain the system of steady state oscillation equations of the thermoe-

lastic diffusion linear theory with microtemperatures and microconcentrations:

µ∆u(x) + (λ0 + µ) grad div u(x) + ρσ2u(x)− γ2 gradP (x)− γ1 gradϑ(x) = −ρF (x), (2.8)

h6∆C(x) + (h4 + h5) grad divC(x) + δ C(x) + iσκ1T (x)− h3 gradP (x) = 0, (2.9)

k6∆T (x) + (k4 + k5) grad div T (x) + κ0 T (x) + iσκ1C(x)− k3 gradϑ(x) = ρG(x), (2.10)

iσγ2 div u(x) + h1 divC(x) + h∆P (x) + iσmP (x) + iσκ ϑ(x) = 0, (2.11)

iσγ1 T0 div u(x) + k1 div T (x) + iσκ T0 P (x) + k∆ϑ(x) + iσc T0 ϑ(x) = −ρ s(x), (2.12)

where

δ = iσm1 − h2, κ0 = iσc1 − k2;

u, C, T , F , and G are complex-valued vector functions, while P , ϑ, and s are complex-valued scalar
functions, and σ is a frequency parameter. If σ = σ1 + i σ2 is a complex parameter with σ2 6= 0,
then the above equations are called the pseudo–oscillation equations, while for σ = 0, they represent
the equilibrium equations of statics. Note that the pseudo–oscillation equations are obtained from the
equations of dynamical system (2.7) by the Laplace transform with the complex parameter σ.

Throughout the paper, we assume that σ is a complex parameter,

σ = σ1 + i σ2, σ1 ∈ R, σ2 > 0. (2.13)
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Let us introduce the matrix differential operator

L(∂, σ) :=


L(1)(∂, σ) L(6)(∂, σ) L(11)(∂, σ) L(16)(∂, σ) L(21)(∂, σ)
L(2)(∂, σ) L(7)(∂, σ) L(12)(∂, σ) L(17)(∂, σ) L(22)(∂, σ)
L(3)(∂, σ) L(8)(∂, σ) L(13)(∂, σ) L(18)(∂, σ) L(23)(∂, σ)
L(4)(∂, σ) L(9)(∂, σ) L(14)(∂, σ) L(19)(∂, σ) L(24)(∂, σ)
L(5)(∂, σ) L(10)(∂, σ) L(15)(∂, σ) L(20)(∂, σ) L(25)(∂, σ)


11×11

, (2.14)

where

L(1)(∂, σ) :=(µ∆ + ρσ2)I3 + (λ0 + µ)Q(∂), L(2)(∂, σ) := [0]3×3,

L(3)(∂, σ) :=[0]3×3, L(4)(∂, σ) := iσγ2∇, L(5)(∂, σ) := iσγ1 T0∇,

L(6)(∂, σ) :=[0]3×3, L(7)(∂, σ) := (h6 ∆ + δ)I3 + (h4 + h5)Q(∂),

L(8)(∂, σ) :=iσκ1 I3, L(9)(∂, σ) := h1∇, L(10)(∂, σ) := [0]1×3,

L(11)(∂, σ) :=[0]3×3, L(12)(∂, σ) := iσκ1 I3,

L(13)(∂, σ) :=(k6∆ + κ0)I3 + (k4 + k5)Q(∂), L(14)(∂, σ) := [0]1×3,

L(15)(∂, σ) :=k1∇, L(16)(∂, σ) := −γ2∇>, L(17)(∂, σ) := −h3∇>,

L(18)(∂, σ) :=[0]3×1, L(19)(∂, σ) := h∆ + iσm, L(20)(∂, σ) := iσκ T0,

L(21)(∂, σ) :=− γ1∇>, L(22)(∂, σ) := [0]3×1, L(23)(∂, σ) := −k3∇>,

L(24)(∂, σ) :=iσκ, L(25)(∂, σ) := k∆ + iσc T0.

(2.15)

Here and in the sequel, Ik stands for the k × k unit matrix and

Q(∂) := [∂k∂j ]3×3, ∇ := [∂1, ∂2, ∂3], ∂k = ∂/∂xk
.

It is easy to show that for V = (V1, V2, V3)>,

Q(∂)V = grad div V, Q(∂) = [Q(∂)]>, [Q(∂)]2 = ∆Q(∂). (2.16)

Due to the above notation, system (2.8)–(2.12) can be rewritten in a matrix form as

L(∂, σ)U(x) = Φ(x),

where U = (u,C, T, P, ϑ)>, Φ(x) =
(
− ρF (x), 0, ρG(x), 0, −ρ s(x)

)>
. The operator L(∂, σ) is not

formally self-adjoint differential operator.

Here, the central dot denotes the real scalar product a · b =
∑N
k=1 akbk for a, b ∈ CN , and [c × d]

denotes the cross product of two vectors c, d ∈ C3.
In view of the constitutive equations (2.1)–(2.3), the components of the stress vector t(n)(U), the

first mass diffusion flux moment vector η(n)(U), and the first heat flux moment vector q(n)(U), acting
on a surface element with a unit outward normal vector n = (n1, n2, n3)>, read as

t
(n)
j (U) =

3∑
p=1

tpj(U)np, η
(n)
j (U) =

3∑
p=1

ηpj(U)np, q
(n)
j (U) =

3∑
p=1

qpj(U)np, j = 1, 2, 3. (2.17)

It is easy to see that (2.17) can be rewritten as

t(n)(U) = 2µ∂n u+ λ0 n div u+ µ[n× curl u]− γ2 nP − γ1 nϑ,

η(n)(U) = −(h5 + h6) ∂n C − h4 n divC − h5[n× curl C],

q(n)(U) = −(k5 + k6) ∂n T − k4 n div T − k5[n× curl T ],

where ∂n = ∂/∂n stands for the normal derivative.
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Due to the constitutive equation (2.4) and (2.5), the normal components of the flux vector of
mass diffusion and the heat flux vector across a surface element with a unit outward normal vector
n = (n1, n2, n3)>, are expressed as follows:

ηn(U) =

3∑
j=1

ηj(U)nj = h1 n · C + h ∂nP, qn(U) =

3∑
j=1

qj(U)nj = k1 n · T + k ∂nϑ.

Throughout the paper, we will refer the eleventh vector (t(n), η(n), q(n), ηn, qn)> as the generalized
stress vector. Further, let us introduce the generalized stress operator

P(∂, n) :=


P(1)(∂, n) [0]3×3 [0]3×3 −γ2n −γ1n

[0]3×3 P(2)(∂, n) [0]3×3 [0]3×1 [0]3×1

[0]3×3 [0]3×3 P(3)(∂, n) [0]3×1 [0]3×1

[0]1×3 h1 n
> [0]1×3 h ∂n 0

[0]1×3 [0]1×3 k1 n
> 0 k ∂n


11×11

, (2.18)

where

P(l)(∂, n) =
[
P(l)
kj (∂, n)

]
3×3

, l = 1, 2, 3,

P(1)
kj (∂, n) = µ δkj ∂n + λ0 nk ∂j + µnj ∂k,

P(2)
kj (∂, n) = h6 δkj ∂n + h4 nk ∂j + h5 nj ∂k,

P(3)
kj (∂, n) = k6 δkj ∂n + k4 nk ∂j + k5 nj ∂k.

(2.19)

Note that for an arbitrary vector U = (u,C, T, P, ϑ)>, the eleventh vector P(∂, n)U is related to the
components of the generalized stress vector as follows:

P(∂, n)U = (t(n), −η(n), −q(n), ηn, qn)>.

Let us introduce the associated boundary operator which is related to the adjoint differential
operator L∗(∂, σ) := L>(−∂, σ),

P∗(∂, n) :=


P(1)(∂, n) [0]3×3 [0]3×3 −iσγ2n −iσγ1T0n

[0]3×3 P(2)(∂, n) [0]3×1 [0]3×1 [0]3×1

[0]3×3 [0]3×1 P(3)(∂, n) [0]3×1 [0]3×1

[0]1×3 h3 n
> [0]1×3 h ∂n [0]1×3

[0]1×3 [0]1×3 k3 n
> [0]1×3 k ∂n


11×11

, (2.20)

where P(j)(∂, n), j = 1, 2, 3, are given by (2.19).

3. Green’s Formulas

Here we assume that the boundary ∂Ω+ of Ω+ is a Lyapunov surface and n stands for the outward
unit normal vector to ∂Ω+.

Definition 3.1. A vector function U = (u,C, T, P, ϑ)> is said to be regular in the domain Ω+ if

U ∈ C2(Ω+) ∩ C1(Ω+).

For regular vector functions U = (u,C, T, P, ϑ)> and U ′ = (u′, C ′, T ′, P ′, ϑ′)> in the domain Ω+,
we have the following Green’s formulas:∫

Ω+

U ′ · L(∂, σ)Udx =

∫
∂Ω+

{U ′}+ · {P(∂, n)U}+dS −
∫

Ω+

E(U ′, U)dx, (3.1)

∫
Ω+

U · L∗(∂, σ)U ′dx =

∫
∂Ω+

{U}+ · {P∗(∂, n)U ′}+dS −
∫

Ω+

E(U ′, U)dx, (3.2)
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where the differential operator L(∂, σ) is given by (2.14), L∗(∂, σ) = L>(−∂, σ) is the formally adjoint
operator to L(∂, σ), the boundary operators P(∂, n) and P∗(∂, n) are defined by (2.18) and (2.20),
respectively; the symbols {·}± denote one-sided limiting values on ∂Ω+ from Ω±, respectively; E(·, ·)
is the so-called energy bilinear form

E(U ′, U) = E(1)(u′, u) + E(2)(C ′, C) + E(3)(T ′, T )− ρσ2 u′ · u− (γ2 P + γ1 ϑ) div u′ − δ C ′ · C
− iσ κ1 C

′ · T + h3 C
′ · gradP − κ0 T

′ · T − iσ κ1 T
′ · C + k3 T

′ · gradϑ

− iσ mP ′ P − iσ γ2 P
′ div u− iσ κ P ′ ϑ+ h1 C · grad P ′ + h gradP ′ · gradP

(3.3)

+ k grad ϑ′ · grad ϑ− iσ c T0 ϑ
′ ϑ− iσ γ1 T0 ϑ

′ div u+ k1 T · grad ϑ′ − iσ κ T0 P ϑ
′,

where

E(1)(u′, u) =
3λ0 + 2µ

3
div u′ div u

+
µ

3

3∑
k,j=1

(
∂u′k
∂xk
−
∂u′j
∂xj

)(
∂uk
∂xk
− ∂uj
∂xj

)

+
µ

2

3∑
k,j=1, k 6=j

(
∂u′k
∂xj

+
∂u′j
∂xk

)(
∂uk
∂xj

+
∂uj
∂xk

)
, (3.4)

E(2)(C ′, C) =
3h4 + h5 + h6

3
divC ′ divC +

h6 − h5

2
curlC ′ · curlC

+
h5 + h6

4

3∑
k,j=1, k 6=j

(
∂C ′k
∂xj

+
∂C ′j
∂xk

)(
∂Ck
∂xj

+
∂Cj
∂xk

)

+
h5 + h6

6

3∑
k,j=1

(
∂C ′k
∂xk

−
∂C ′j
∂xj

)(
∂Ck
∂xk
− ∂Cj

∂xj

)
, (3.5)

E(3)(T ′, T ) =
3k4 + k5 + k6

3
div T ′ div T +

k6 − k5

2
curlT ′ · curlT

+
k5 + k6

4

3∑
k,j=1, k 6=j

(
∂T ′k
∂xj

+
∂T ′j
∂xk

)(
∂Tk
∂xj

+
∂Tj
∂xk

)

+
k5 + k6

6

3∑
k,j=1

(
∂T ′k
∂xk
−
∂T ′j
∂xj

)(
∂Tk
∂xk
− ∂Tj
∂xj

)
. (3.6)

With the help of relations (3.1) and (3.2) we can show that the following second Green’s identity∫
Ω+

[U ′ · L(∂, σ)U − U · L∗(∂, σ)U ′] dx

=

∫
∂Ω+

[
{U ′}+ · {P(∂, n)U}+ − {U}+ · {P∗(∂, n)U ′}+

]
dS (3.7)

holds.
Let us note that the differential operator

L(∂) := L(∂, 0) (3.8)

corresponds to the static equilibrium case, while the formally self-adjoint differential operator

L0(∂) :=


L

(1)
0 (∂) [0]3×3 [0]3×3 [0]3×1 [0]3×1

[0]3×3 L
(7)
0 (∂) [0]3×3 [0]3×1 [0]3×1

[0]3×3 [0]3×3 L
(13)
0 (∂) [0]3×1 [0]3×1

[0]1×3 [0]1×3 [0]1×3 h∆ 0
[0]1×3 [0]1×3 [0]1×3 0 k∆


11×11

(3.9)
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with
L

(1)
0 (∂) := µ∆I3 + (λ0 + µ)Q(∂),

L
(7)
0 (∂) := h6∆I3 + (h4 + h5)Q(∂),

L
(13)
0 (∂) := k6∆I3 + (k4 + k5)Q(∂),

(3.10)

represents the principal homogeneous part of operators (2.14) and (3.8). With the help of inequalities
(2.6), one can show that the differential operators L0(∂) and L(∂, σ) are strongly elliptic and the
following inequality

D2|ξ|2|ζ|2 ≥ L0(ξ)ζ · ζ =

11∑
k,j=1

L0(ξ)kjζjζk ≥ D1|ξ|2|ζ|2

holds with some constants Dk > 0 (k = 1, 2) for an arbitrary ξ ∈ R3 and arbitrary complex vector
ζ ∈ C11.

4. The Matrix of Fundamental Solutions

Note that the construction of the fundamental matrix is carried out by the same method as indicated
in [6,7,14]. Let Fx→ξ and F −1

ξ→x denote the direct and inverse distributional Fourier transform in the

space of tempered distributions (Schwartz space S ′(R3)), which for regular summable functions f and

f̂ reads as follows:

Fx→ξ[f ] =

∫
R3

f(x) ei x·ξdx = f̂(ξ), F −1
ξ→x[f̂ ] =

1

(2π)3

∫
R3

f̂(ξ) e−i x·ξdξ = f(x),

where x= (x1, x2, x3) and ξ= (ξ1, ξ2, ξ3). Note that for an arbitrary multi-index α= (α1, α2, α3) and
f ∈ S ′(R3)

F [∂αf ] = (−i ξ)αF [f ], F −1[ξαf̂ ] = (i ∂)αF −1[f̂ ], (4.1)

where |α| = α1 + α2 + α3 and ξα = ξα1
1 ξα2

2 ξα3
3 . Denote by Γ(x, σ) = [Γkj(x, σ)]11×11 the matrix of

fundamental solutions of the operator L(∂, σ) (see (2.14), (2.15))

L(∂, σ) Γ(x, σ) = δ(x) I11, (4.2)

where δ( · ) is Dirac’s distribution.
We represent the matrix Γ(x, σ) in the blockwise form

Γ(x, σ) =


Γ(1)(x, σ) Γ(2)(x, σ) Γ(3)(x, σ) Γ(4)(x, σ) Γ(5)(x, σ)
Γ(6)(x, σ) Γ(7)(x, σ) Γ(8)(x, σ) Γ(9)(x, σ) Γ(10)(x, σ)
Γ(11)(x, σ) Γ(12)(x, σ) Γ(13)(x, σ) Γ(14)(x, σ) Γ(15)(x, σ)
Γ(16)(x, σ) Γ(17)(x, σ) Γ(18)(x, σ) Γ(19)(x, σ) Γ(20)(x, σ)
Γ(21)(x, σ) Γ(22)(x, σ) Γ(23)(x, σ) Γ(24)(x, σ) Γ(25)(x, σ)


11×11

,

where

Γ(j)(x, σ) =
[
Γ(j)
pq (x, σ)

]
3×3

, j = 1, 2, 3, 6, 7, 8, 11, 12, 13,

Γ(j)(x, σ) =
[
Γ(j)
pq (x, σ)

]
3×1

, j = 4, 5, 9, 10, 14, 15,

Γ(j)(x, σ) =
[
Γ(j)
pq (x, σ)

]
1×3

, j = 16, 17, 18, 21, 22, 23,

and Γ(19)(x, σ), Γ(20)(x, σ), Γ(24)(x, σ), and Γ(25)(x, σ) are scalar functions. By Γ̂(ξ, σ) and Γ̂(k)(ξ, σ)
we denote the Fourier transforms of the matrices Γ(x, σ) and Γ(k)(x, σ), k = 1, 2, . . . , 25. Applying the
Fourier transform to equation (4.2) and taking into consideration (4.1) and the equality F [δ(·)] = 1,
we get

L(−i ξ, σ) Γ̂(ξ, σ) = I11. (4.3)

We have to find Γ̂(ξ, σ) from (4.3) and afterwards with the help of the inverse Fourier transform
construct the fundamental matrix Γ(x, σ) explicitly in terms of the standard elementary functions.
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First of all, we have to represent the matrix Γ̂(ξ, σ) = [L(−i ξ, σ)]−1 in such a form which is convenient
for calculation of the inverse Fourier transform. To this end, we proceed as follows. We set r := |ξ| =√
ξ2
1 + ξ2

2 + ξ2
3 and introduce the notation

A(ξ) :=L(1)(−i ξ, σ) = (ρ σ2 − µ r2) I3 − (λ0 + µ)Q(ξ),

B(ξ) :=L(7)(−i ξ, σ) = (δ − h6 r
2) I3 − (h4 + h5)Q(ξ), (4.4)

D(ξ) :=L(13)(−i ξ, σ) = (κ0 − k6r
2) I3 − (k4 + k5)Q(ξ),

where Q(·) is defined by (2.16). Applying the relations (2.16) and (4.4) we can easily show that

A(ξ) = A(−ξ) = A>(ξ), B(ξ) = B(−ξ) = B>(ξ),

D(ξ) = D(−ξ) = D>(ξ), Q(ξ) = Q>(ξ), [Q(ξ)]2 = r2Q(ξ),

and the matrices A,B, and D commute to each other.
In view of (2.14)–(2.16) from (4.3) we derive

A(ξ) Γ̂(j)(ξ, σ) + iγ2ξ
> Γ̂(j+15)(ξ, σ) + iγ1ξ

> Γ̂(j+20)(ξ, σ) = δ1jI3 ,

B(ξ) Γ̂(j+5)(ξ, σ) + iσ κ1 Γ̂(j+10)(ξ, σ) + i h3 ξ
> Γ̂(j+15)(ξ, σ) = δ2jI3 ,

iσ κ1 Γ̂(j+5)(ξ, σ) +D(ξ) Γ̂(j+10)(ξ, σ) + i k3 ξ
> Γ̂(j+20)(ξ, σ) = δ3jI3 ,

σ γ2ξ Γ̂(j)(ξ, σ)− i h1ξ Γ̂(j+5)(ξ, σ) + (iσ m− h r2) Γ̂(j+15)(ξ, σ) + iσ κ Γ̂(j+20)(ξ, σ) = δ4j ,
(4.5)

σ γ1 T0 ξ Γ̂(j)(ξ, σ)− i k1 ξ Γ̂(j+10)(ξ, σ) + iσ κ T0 Γ̂(j+15)(ξ, σ) + (iσ c T0 − k r2) Γ̂(j+20)(ξ, σ) = δ5j ,

j = 1, 2, . . . , 5.

From the system (4.5), by direct calculations, we can show that the elements of the matrix Γ̂(ξ, σ)
have the form

Γ̂(j)(ξ, σ) =
1

Λ(ξ)
[aj(ξ)I3 + bj(ξ)Q(ξ)], j = 1, 7, 8, 12, 13,

Γ̂(j)(ξ, σ) =
1

Λ(ξ)
bj(ξ)Q(ξ), j = 2, 3, 6, 11,

Γ̂(j)(ξ, σ) =
1

Λ(ξ)
cj(ξ)ξ

>, j = 4, 5, 9, 10, 14, 15,

Γ̂(j)(ξ, σ) =
1

Λ(ξ)
cj(ξ)ξ, j = 16, 17, 18, 21, 22, 23,

Γ̂(j)(ξ, σ) =
1

Λ(ξ)
aj(ξ), j = 19, 20, 24, 25.

Here,

Λ(ξ) = detL(−iξ, σ) = a′(ξ)
(
a′(ξ) + b′(ξ)r2

)
a(ξ)

(
a(ξ) + b(ξ)r2

)
Λ0(ξ) = d1

11∏
j=1

(r2 − λ2
j ),

a′(ξ) = ρ σ2 − µ r2 = −µ(r2 − λ2
1), λ2

1 = ρ σ2 µ−1, b′(ξ) = −(λ0 + µ),

a′(ξ) + b′(ξ) r2 = ρ σ2 − (λ0 + 2µ) r2 = −(λ0 + 2µ)(r2 − λ2
2), λ2

2 = ρ σ2(λ0 + 2µ)−1,
(4.6)

d1 = −µ (λ0 + 2µ)h0 k0 h6 k6 d, d = (λ0 + 2µ)h0 k0 h k, h0 = h4 + h5 + h6, k0 = k4 + k5 + k6;

±λ3, ±λ4 and ±λ5, ±λ6 are the roots, with respect to r = |ξ|, of the equations a(ξ) = 0 and
a(ξ) + b(ξ) r2 = 0, respectively;

a(ξ) = (h6 r
2 − δ)(k6 r

2 − κ0) + σ2κ2
1 = h6 k6 (r2 − λ2

3)(r2 − λ2
4),

b(ξ) = (h4 + h5)(k4 + k5)r2 + (k4 + k5)(h6 r
2 − δ) + (h4 + h5)(k6 r

2 − κ0),

a(ξ) + b(ξ) r2 = (h0 r
2 − δ)(k0 r

2 − κ0) + σ2 κ2
1 = h0 k0 (r2 − λ2

5)(r2 − λ6),

(4.7)
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±λj , j = 7, 8, . . . , 11, are the roots of the equation Λ0(ξ) = 0 with respect to r = |ξ|, where

Λ0(ξ) =
[
h1 h3(κ0 − k0 r

2) r2 − (iσ m− h r2)(a(ξ) + b(ξ) r2)
] [
i σ T0 γ

2
1 r

2 − (i σ c T0 − k r2)(ρ σ2−
− (λ0 + 2µ) r2)

]
+
[
κ T0 (a(ξ) + b(ξ) r2) + κ1 (h1 k3 T0 + k1 h3)r2

][
σ2 κ ( ρ σ2 − (λ0 + 2µ) r2

)
−

− σ2 γ1 γ2 r
2
]

+ k1 k3( ρ σ2 − (λ0 + 2µ) r2)
[
h1 h3 r

2 − (iσ m− h r2)(δ − h0 r
2)
]
r2− (4.8)

− σ2 γ1 γ2 κ T0 (a(ξ) + b(ξ) r2) + iσ γ2
2 r

2
[
k1 k3 (δ − h0 r

2)r2−

− (i σ c T0 − k r2) (a(ξ) + b(ξ) r2)
]

= −d
11∏
j=7

(r2 − λ2
j );

a1(ξ) = (a′(ξ) + b′(ξ)r2) a(ξ) (a(ξ) + b(ξ)r2)Λ0(ξ),

a7(ξ) = a′(ξ) (a′(ξ) + b′(ξ)r2) (a(ξ) + b(ξ)r2)(κ0 − k6 r
2)Λ0(ξ),

a8(ξ) = −iσ κ1 a
′(ξ) (a′(ξ) + b′(ξ)r2) (a(ξ) + b(ξ)r2)Λ0(ξ),

a12(ξ) = −iσ κ1 a
′(ξ) (a′(ξ) + b′(ξ)r2) (a(ξ) + b(ξ)r2)Λ0(ξ),

a13(ξ) = a′(ξ) (a′(ξ) + b′(ξ)r2) (a(ξ) + b(ξ)r2)(δ − h6 r
2)Λ0(ξ),

(4.9)

a19(ξ) = a′(ξ) (a′(ξ) + b′(ξ)r2) a(ξ) (a(ξ) + b(ξ)r2) γ44(ξ),

a20(ξ) = a′(ξ) (a′(ξ) + b′(ξ)r2) a(ξ) (a(ξ) + b(ξ)r2) γ45(ξ),

a24(ξ) = a′(ξ) (a′(ξ) + b′(ξ)r2) a(ξ) (a(ξ) + b(ξ)r2) γ54(ξ),

a25(ξ) = a′(ξ) (a′(ξ) + b′(ξ)r2) a(ξ) (a(ξ) + b(ξ)r2) γ55(ξ),

(4.10)

γ44(ξ) =(a(ξ) + b(ξ)r2)
[
(a′(ξ) + b′(ξ)r2)(iσ c T0 − k r2)− iσ γ2

1 T0 r
2
]

− k1 k3(a′(ξ) + b′(ξ)r2)(δ − h0 r
2) r2,

γ45(ξ) =iσ (a(ξ) + b(ξ)r2)
[
γ1 γ2 r

2 − κ (a′(ξ) + b′(ξ)r2)
]
− iσ κ1 h1 k3 (a′(ξ) + b′(ξ)r2) r2,

γ54(ξ) =iσ T0(a(ξ) + b(ξ)r2)
[
γ1 γ2 r

2 − κ (a′(ξ) + b′(ξ)r2)
]
− iσ κ1 k1 h3 (a′(ξ) + b′(ξ)r2) r2,

γ55(ξ) =(a(ξ) + b(ξ)r2)
[
(a′(ξ) + b′(ξ)r2)(iσ m− h r2)− iσ γ2

2 r
2
]

− h1 h3 (a′(ξ) + b′(ξ)r2)(κ0 − k0 r
2) r2.

(4.11)

b1(ξ) = −a(ξ)(a(ξ) + b(ξ)r2)
{
b′(ξ) Λ0(ξ) + i a′(ξ)

[
γ2 γ41(ξ) + γ1 γ51(ξ)

]}
,

b2(ξ) = −ia′(ξ)a(ξ)(a(ξ) + b(ξ)r2)
[
γ2 γ42(ξ) + γ1 γ52(ξ)

]
,

b3(ξ) = −ia′(ξ)a(ξ)(a(ξ) + b(ξ)r2)
[
γ2 γ43(ξ) + γ1 γ53(ξ)

]
,

b6(ξ) = a′(ξ)(a′(ξ) + b′(ξ)r2)a(ξ)
[
i h3 (k0 r

2 − κ0) γ41(ξ)− σ κ1 k3 γ51(ξ)
]
,

b7(ξ) = a′(ξ)(a′(ξ) + b′(ξ)r2)
{

Λ0(ξ)
[
(k6 r

2 − κ0) b(ξ)− (k4 + k5) a(ξ)
]

+ a(ξ)
[
ih3 (k0 r

2 − κ0)γ42(ξ)− σ κ1 k3 γ52(ξ)
]}
,

b8(ξ) = a′(ξ)(a′(ξ) + b′(ξ)r2)
{
iσ κ1 b(ξ)Λ0(ξ)

+ a(ξ)
[
ih3 (k0 r

2 − κ0)γ43(ξ)− σ κ1 k3 γ53(ξ)
]}
,

(4.12)

b11(ξ) = a′(ξ)(a′(ξ) + b′(ξ)r2) a(ξ)
[
i k3 (h0 r

2 − δ)γ51(ξ)− σ κ1 h3 γ41(ξ)
]
,

b12(ξ) = a′(ξ)(a′(ξ) + b′(ξ)r2)
{
a(ξ)

[
ik3 (h0 r

2 − δ)γ52(ξ)

− σ κ1 h3 γ42(ξ)
]
− iσ κ1 b(ξ) Λ0(ξ)

}
,

b13(ξ) = a′(ξ)(a′(ξ) + b′(ξ)r2)
{
a(ξ)

[
ik3 (h0 r

2 − δ)γ53(ξ)− σ κ1 h3 γ43(ξ)
]

−
[
(h4 + h5) a(ξ) + (δ − h6 r

2) b(ξ)
]

Λ0(ξ)
}
,

(4.13)
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c4(ξ) = −ia′(ξ)a(ξ)(a(ξ) + b(ξ)r2)
[
γ2 γ44(ξ) + γ1 γ54(ξ)

]
,

c5(ξ) = −ia′(ξ)a(ξ)(a(ξ) + b(ξ)r2)
[
γ2 γ45(ξ) + γ1 γ55(ξ)

]
,

c9(ξ) = a′(ξ)(a′(ξ) + b′(ξ)r2)a(ξ)
[
i h3 (k0 r

2 − κ0) γ44(ξ)− σ κ1 k3 γ54(ξ)
]
,

c10(ξ) = a′(ξ)(a′(ξ) + b′(ξ)r2)a(ξ)
[
i h3 (k0 r

2 − κ0) γ45(ξ)− σ κ1 k3 γ55(ξ)
]
,

c14(ξ) = a′(ξ)(a′(ξ) + b′(ξ)r2)a(ξ)
[
i k3 (h0 r

2 − δ) γ54(ξ)− σ κ1 h3 γ44(ξ)
]
,

c15(ξ) = a′(ξ)(a′(ξ) + b′(ξ)r2)a(ξ)
[
i k3 (h0 r

2 − δ) γ55(ξ)− σ κ1 h3 γ45(ξ)
]
,

c16(ξ) = a′(ξ)(a′(ξ) + b′(ξ)r2)a(ξ)(a(ξ) + b(ξ)r2)γ41(ξ),

c17(ξ) = a′(ξ)(a′(ξ) + b′(ξ)r2)a(ξ)(a(ξ) + b(ξ)r2)γ42(ξ),

c18(ξ) = a′(ξ)(a′(ξ) + b′(ξ)r2)a(ξ)(a(ξ) + b(ξ)r2)γ43(ξ),

c21(ξ) = a′(ξ)(a′(ξ) + b′(ξ)r2)a(ξ)(a(ξ) + b(ξ)r2)γ51(ξ),

c22(ξ) = a′(ξ)(a′(ξ) + b′(ξ)r2)a(ξ)(a(ξ) + b(ξ)r2)γ52(ξ),

c23(ξ) = a′(ξ)(a′(ξ) + b′(ξ)r2)a(ξ)(a(ξ) + b(ξ)r2)γ53(ξ),

(4.14)

γ41(ξ) =
(
a(ξ) + b(ξ)r2

)[
iσ2 κ γ1 T0 − σ γ2(iσ c T0 − k r2)

]
+
[
iσ2 κ1 γ1 h1 k3 T0 + σk1 k3 γ2(δ − h0 r

2)
]
r2,

γ42(ξ) =σ γ2
1 h1 T0 r

2(κ0 − k0 r
2) + iσ2 κ1 k1 γ1 γ2 r

2

− (a′(ξ) + b′(ξ)r2)
[
iσ2 κ κ1 k1 + i h1 k1 k3 r

2 − i h1 (κ0 − k0 r
2)(iσ c T0 − k r2)

]
,

γ43(ξ) =σ k1 γ1 γ2 (h0 r
2 − δ)r2 − iσ2 κ1 h1 γ

2
1 T0 r

2

+ (a′(ξ) + b′(ξ)r2)
[
σ κ k1 (δ − h0 r

2) + σ κ1 h1

(
iσ c T0 − k r2

)]
,

γ51(ξ) =T0 (a(ξ) + b(ξ)r2)
[
iσ2 κ γ2 − σ γ1(iσ m− h r2)

]
+ σ γ1 h1 h3 T0(κ0 − k0 r

2)r2 + iσ2 κ1 k1 h3 γ2 r
2,

γ52(ξ) =σ h1 γ1 γ2 T0 (k0 r
2 − κ0) r2 − i σ2 κ1 k1 γ

2
2 r

2

− (a′(ξ) + b′(ξ)r2)
[
σ κ1 k1 (h r2 − iσ m)− σ κ h1 T0(k0 r

2 − κ0)
]
,

(4.15)

γ53(ξ) =σ k1 γ
2
2 (δ − h0 r

2) r2 + iσ2 κ1 h1 γ1 γ2 T0 r
2+

+ (a′(ξ) + b′(ξ)r2)
[
i k1(δ − h0 r

2)(iσ m− h r2)− i k1 h1 h3 r
2 − iσ2 κ κ1 h1 T0

]
,

Now, we can represent the matrix Γ̂(ξ, σ) in the form

Γ̂(ξ, σ) = [L(−i ξ, σ)]−1 =
1

Λ(ξ)
M(ξ, σ), (4.16)

where

M(ξ, σ) :=



a1(ξ) I3 [0]3×3 [0]3×3 [0]3×1 [0]3×1

[0]3×3 a7(ξ) I3 a8(ξ) I3 [0]3×1 [0]3×1

[0]3×3 a12(ξ) I3 a13(ξ) I3 [0]3×1 [0]3×1

[0]1×3 [0]1×3 [0]1×3 a19(ξ) a20(ξ)

[0]1×3 [0]1×3 [0]1×3 a24(ξ) a25(ξ)



+



b1(ξ)Q(ξ) b2(ξ)Q(ξ) b3(ξ)Q(ξ) [0]3×1 [0]3×1

b6(ξ)Q(ξ) b7(ξ)Q(ξ) b8(ξ)Q(ξ) [0]3×1 [0]3×1

b11(ξ)Q(ξ) b12(ξ)Q(ξ) b13(ξ)Q(ξ) [0]3×1 [0]3×1

[0]1×3 [0]1×3 [0]1×3 0 0

[0]1×3 [0]1×3 [0]1×3 0 0


(4.17)
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+



[0]3×3 [0]3×3 [0]3×3 c4(ξ) ξ> c5(ξ) ξ>

[0]3×3 [0]3×3 [0]3×3 c9(ξ) ξ> c10(ξ) ξ>

[0]3×3 [0]3×3 [0]3×3 c14(ξ) ξ> c15(ξ) ξ>

c16(ξ) ξ c17(ξ) ξ c18(ξ) ξ 0 0

c21(ξ) ξ c22(ξ) ξ c23(ξ) ξ 0 0


.

Note that the entries of the matrix M(ξ, σ) are polynomials in ξ. Therefore, to invert the Fourier
transform and find an explicit form for the fundamental matrix Γ(x, σ) we need the roots with respect
to r = |ξ| of the equation

Λ(ξ) = detL(−i ξ, σ) = 0. (4.18)

Due to the evenness of the function Λ(ξ) with respect to r = |ξ|, it is clear that if r = r0 is a root
of the equation Λ(ξ) = 0, then so is r = −r0. In view of (4.6) the roots of the equation Λ(ξ) = 0
are ±λj , j = 1, 2, . . . , 11. For the sake of simplicity, we assume that λj 6= λk, for j 6= k, Imλj > 0,
and if Imλj = 0, then λj > 0, (see Appendix A). Therefore, in view of (4.16) we can represent the
fundamental solution as

Γ(x, σ) = F −1
ξ→x

[
Γ̂(ξ, σ)

]
=

1

d1
F −1
ξ→x

[
M(ξ, σ)

1

Φ(r)

]
=

1

d1
M(i ∂, σ)F −1

ξ→x

[ 1

Φ(r)

]
, (4.19)

where

Φ(r) =

11∏
j=1

(r2 − λ2
j ), d1 = −µ (λ0 + 2µ)h0 k0 h6 k6 d.

Note that

1

Φ(r)
=

11∑
j=1

pj
r2 − λ2

j

,

where the parameters p1, p2, . . . , p11 solve the system of linear algebraic equations

λ2m
1 p1 + λ2m

2 p2 + · · ·+ λ2m
11 p11 = 0, m = 0, 1, . . . , 9,

λ20
1 p1 + λ20

2 p2 + · · ·+ λ20
11 p11 = 1.

They can be represented as follows:

pj =

 11∏
l=1, l 6=j

(λ2
l − λ2

j )

−1

.

Note that if Imλj ≥ 0, then

F−1
ξ→x

[
1

r2 − λ2
j

]
=
ei λj |x|

4π|x|
.

Therefore,

F−1
ξ→x

[ 1

Φ(r)

]
=

1

4π

11∑
j=1

pj
ei λj |x|

|x|
.

Now, from (4.19), we deduce

Γ(x, σ) =
1

4π d1
M(i ∂, σ)

11∑
j=1

pj
ei λj |x|

|x|
, (4.20)

or

Γ(x, σ) =
1

4π d1
M(i ∂, σ) Ψ(x, σ) ,
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where the differential operator M(i ∂, σ) is given by (4.17) with i ∂ for ξ and

Ψ(x, σ) =

11∑
j=1

pj
ei λj |x|

|x|
.

We can simplify M(i ∂, σ)Ψ(x, σ) and rewrite the fundamental solution in a more explicit form. To
this end, let us note that

∆
ei λj |x|

|x|
= −λ2

j

ei λj |x|

|x|
, |x| 6= 0,

and apply formulas (4.7)–(4.15) to obtain

a(i ∂)Ψ(x, σ) =

11∑
j=1

pj a
(j) e

i λj |x|

|x|
, b(i ∂)Ψ(x, σ) =

11∑
j=1

pj b
(j) e

i λj |x|

|x|
,

al(i ∂)Ψ(x, σ) =

11∑
j=1

pja
(j)
l

ei λj |x|

|x|
, l = 1, 7, 8, 12, 13, 19, 20, 24, 25,

bl(i ∂)Ψ(x, σ) =
11∑
j=1

pjb
(j)
l

ei λj |x|

|x|
, l = 1, 2, 3, 6, 7, 8, 11, 12, 13,

cl(i ∂)Ψ(x, σ) =

11∑
j=1

pjc
(j)
l

ei λj |x|

|x|
, l = 4, 5, 9, 10, 14, 15, 16, 17, 18, 21, 22, 23,

where

a(j) = h6 k6(λ2
j − λ2

3)(λ2
j − λ2

4),

b(j) = (h4 + h5)(k4 + k5)λ2
j + (k4 + k5)(h6 λ

2
j − δ) + (h4 + h5)(k6 λ

2
j − κ0),

a
(j)
1 = (λ0 + 2µ)h0 k0 h6 k6 d

11∏
l=2

(λ2
j − λ2

l ),

a
(j)
7 = −µ (λ0 + 2µ)h0 k0 d (κ0 − k6 λ

2
j )

2∏
l=1

(λ2
j − λ2

l )

11∏
l=5

(λ2
j − λ2

l ),

a
(j)
8 = iσ κ1 µ (λ0 + 2µ)h0 k0 d

2∏
l=1

(λ2
j − λ2

l )

11∏
l=5

(λ2
j − λ2

l ),

a
(j)
12 = a

(j)
8 ,

a
(j)
13 = −µ (λ0 + 2µ)h0 k0 d (δ − h6 λ

2
j )

2∏
l=1

(λ2
j − λ2

l )

11∏
l=5

(λ2
j − λ2

l ),

a
(j)
19 = µ (λ0 + 2µ)h0 k0 h6 k6

6∏
l=1

(λ2
j − λ2

l ) γ
(j)
44 ,

a
(j)
20 = µ (λ0 + 2µ)h0 k0 h6 k6

6∏
l=1

(λ2
j − λ2

l ) γ
(j)
45 ,

a
(j)
24 = µ (λ0 + 2µ)h0 k0 h6 k6

6∏
l=1

(λ2
j − λ2

l ) γ
(j)
54 ,

a
(j)
25 = µ (λ0 + 2µ)h0 k0 h6 k6

6∏
l=1

(λ2
j − λ2

l ) γ
(j)
55 ,

γ
(j)
44 = h0 k0 (λ2

j − λ2
5)(λ2

j − λ2
6)
[
(λ0 + 2µ) (λ2

j − λ2
2) (k λ2

j − iσ c T0

)
− iσ γ2

1λ
2
j

]
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+ k1 k3 (λ0 + 2µ) (λ2
j − λ2

2)(δ − h0 λ
2
j )λ

2
j

γ
(j)
45 = iσ h0 k0 (λ2

j − λ2
5)(λ2

j − λ2
6)
[
γ1 γ2λ

2
j + κ (λ0 + 2µ) (λ2

j − λ2
2)
]

+ iσ κ1 h1 k3(λ0 + 2µ) (λ2
j − λ2

2)λ2
j ,

γ
(j)
54 = iσ h0 k0 T0 (λ2

j − λ2
5)(λ2

j − λ2
6)
[
γ1 γ2λ

2
j + κ (λ0 + 2µ) (λ2

j − λ2
2)
]

+ i σ κ1 k1 h3(λ0 + 2µ) (λ2
j − λ2

2)λ2
j ,

γ
(j)
55 = h0 k0 (λ2

j − λ2
5)(λ2

j − λ2
6)
[
(λ0 + 2µ) (λ2

j − λ2
2)(hλ2

j − i σ m)− iσ γ2
2 λ

2
j

]
+ h1 h3(λ0 + 2µ) (λ2

j − λ2
2)(κ0 − k0 λ

2
j )λ

2
j ,

b
(j)
1 = −h0 k0 h6 k6

{
(λ0 + µ) d

11∏
l=3

(λ2
j − λ2

l )− iµ(λ2
j − λ2

1)

6∏
l=3

(λ2
j − λ2

l )
[
γ2 γ

(j)
41 + γ1 γ

(j)
51

]}
,

b
(j)
2 = i µ h0 k0 h6 k6 (λ2

j − λ2
1)

6∏
l=3

(λ2
j − λ2

l )
[
γ2 γ

(j)
42 + γ1 γ

(j)
52

]
,

b
(j)
3 = i µ h0 k0 h6 k6 (λ2

j − λ2
1)

6∏
l=3

(λ2
j − λ2

l )
[
γ2 γ

(j)
43 + γ1 γ

(j)
53

]
,

b
(j)
6 = µ (λ0 + 2µ)h6 k6

4∏
l=1

(λ2
j − λ2

l )
[
ih3(k0λ

2
j − κ0)γ

(j)
41 − σ κ1 k3 γ

(j)
51

]
,

b
(j)
7 = µ (λ0 + 2µ)(λ2

j − λ2
1)(λ2

j − λ2
2)
{
− d

11∏
l=7

(λ2
j − λ2

l )
[
(k6λ

2
j − κ0) b(j) − (k4 + k5)a(j)

]
+ a(j)

[
ih3(k0λ

2
j − κ0)γ

(j)
42 − σ κ1 k3 γ

(j)
52

]}
,

b
(j)
8 = µ (λ0 + 2µ)(λ2

j − λ2
1)(λ2

j − λ2
2)
{
− iσ κ1 d b

(j)
11∏
l=7

(λ2
j − λ2

l )

+ a(j)
[
ih3(k0λ

2
j − κ0)γ

(j)
43 − σ κ1 k3 γ

(j)
53

]}
,

b
(j)
11 = µ (λ0 + 2µ)h6 k6

4∏
l=1

(λ2
j − λ2

l )
[
ik3(h0λ

2
j − δ)γ

(j)
51 − σ κ1 h3 γ

(j)
41

]
,

b
(j)
12 = µ (λ0 + 2µ)(λ2

j − λ2
1)(λ2

j − λ2
2)
{
a(j)
[
ik3(h0λ

2
j − δ)γ

(j)
52 − σ κ1 h3 γ

(j)
42

]
+ iσκ1d b

(j)
11∏
l=7

(λ2
j − λ2

l )
}
,

b
(j)
13 = µ (λ0 + 2µ)(λ2

j − λ2
1)(λ2

j − λ2
2)
{
a(j)
[
ik3(h0λ

2
j − δ)γ

(j)
53 − σ κ1 h3 γ

(j)
43

]
+ d

11∏
l=7

(λ2
j − λ2

l )
[
(h4 + h5)a(j) + (δ − h6λ

2
j )b

(j)
]}
,

c
(j)
4 = i µ h0 k0 h6 k6 (λ2

j − λ2
1)

6∏
l=3

(λ2
j − λ2

l )
[
γ2 γ

(j)
44 + γ1 γ

(j)
54

]
,

c
(j)
5 = i µ h0 k0 h6 k6 (λ2

j − λ2
1)

6∏
l=3

(λ2
j − λ2

l )
[
γ2 γ

(j)
45 + γ1 γ

(j)
55

]
,

c
(j)
9 = µ (λ0 + 2µ)h6 k6

4∏
l=1

(λ2
j − λ2

l )
[
ih3 (k0λ

2
j − κ0) γ

(j)
44 − σ κ1 k3 γ

(j)
54

]
,

c
(j)
10 = µ (λ0 + 2µ)h6 k6

4∏
l=1

(λ2
j − λ2

l )
[
ih3 (k0λ

2
j − κ0) γ

(j)
45 − σ κ1 k3 γ

(j)
55

]
,
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c
(j)
14 = µ (λ0 + 2µ)h6 k6

4∏
l=1

(λ2
j − λ2

l )
[
ik3 (h0λ

2
j − δ) γ

(j)
54 − σ κ1 h3 γ

(j)
44

]
,

c
(j)
15 = µ (λ0 + 2µ)h6 k6

4∏
l=1

(λ2
j − λ2

l )
[
ik3 (h0λ

2
j − δ) γ

(j)
55 − σ κ1 h3 γ

(j)
45

]
,

c
(j)
16 = µ (λ0 + 2µ)h6 k6 h0 k0

6∏
l=1

(λ2
j − λ2

l ) γ
(j)
41 ,

c
(j)
17 = µ (λ0 + 2µ)h6 k6 h0 k0

6∏
l=1

(λ2
j − λ2

l ) γ
(j)
42 ,

c
(j)
18 = µ (λ0 + 2µ)h6 k6 h0 k0

6∏
l=1

(λ2
j − λ2

l ) γ
(j)
43 ,

c
(j)
21 = µ (λ0 + 2µ)h6 k6 h0 k0

6∏
l=1

(λ2
j − λ2

l ) γ
(j)
51 ,

c
(j)
22 = µ (λ0 + 2µ)h6 k6 h0 k0

6∏
l=1

(λ2
j − λ2

l ) γ
(j)
52 ,

c
(j)
23 = µ (λ0 + 2µ)h6 k6 h0 k0

6∏
l=1

(λ2
j − λ2

l ) γ
(j)
53 ,

γ
(j)
41 = h0 k0 (λ2

j − λ2
5)(λ2

j − λ2
6)
[
iσ2 κ γ1 T0 − σγ2(iσ c T0 − kλ2

j )
]

+
[
iσ2 κ1 γ1 h1 k3T0 + σ k1 k3 γ2(δ − h0 λ

2
j )
]
λ2
j ,

γ
(j)
42 = σ h1 γ

2
1 T0 λ

2
j (κ0 − k0 λ

2
j ) + iσ2 κ1 k1 γ1γ2 λ

2
j

+ (λ0 + 2µ)(λ2
j − λ2

2)
[
iσ2 κ κ1 k1 + i h1 k1 k3λ

2
j − ih1(κ0 − k0λ

2
j )(iσ c T0 − k λ2

j )
]
,

γ
(j)
43 = σ k1 γ1 γ2 (h0 λ

2
j − δ)λ2

j − iσ2 κ1 h1 γ
2
1 T0 λ

2
j

− (λ0 + 2µ)(λ2
j − λ2

2)
[
σ κ k1 (δ − h0 λ

2
j ) + σ κ1 h1

(
iσ c T0 − k λ2

j

)]
,

γ
(j)
51 = h0 k0 T0 (λ2

j − λ2
5)(λ2

j − λ2
6)
[
iσ2 κ γ2 − σ γ1(iσ m− hλ2

j )
]

+ σ γ1 h1 h3 T0(κ0 − k0 λ
2
j )λ

2
j + iσ2 κ1 k1 h3 γ2 λ

2
j ,

γ
(j)
52 = σ h1 γ1 γ2 T0 (k0 λ

2
j − κ0)λ2

j − i σ2 κ1 k1 γ
2
2 λ

2
j

+ (λ0 + 2µ)(λ2
j − λ2

2)
[
σ κ1 k1 (hλ2

j − iσ m)− σ κ h1 T0(k0 λ
2
j − κ0)

]
,

γ
(j)
53 = σ k1 γ

2
2 (δ − h0 λ

2
j )λ

2
j + iσ2 κ1 h1 γ1 γ2 T0 λ

2
j

− (λ0 + 2µ)(λ2
j − λ2

2)
[
i k1(δ − h0 λ

2
j )(iσ m− hλ2

j )− i k1 h1 h3 λ
2
j − iσ2 κ κ1 h1 T0

]
,

From (4.17) and (4.19), for the fundamental matrix, we get the following representation:

Γ(x, σ) =
1

4π d1





Ψ1(x, σ) I3 [0]3×3 [0]3×3 [0]3×1 [0]3×1

[0]3×3 Ψ7(x, σ) I3 Ψ8(x, σ) I3 [0]3×1 [0]3×1

[0]3×3 Ψ12(x, σ) I3 Ψ13(x, σ)I3 [0]3×1 [0]3×1

[0]1×3 [0]1×3 [0]1×3 Ψ19(x, σ) Ψ20(x, σ)

[0]1×3 [0]1×3 [0]1×3 Ψ24(x, σ) Ψ25(x, σ)
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+



Q(∂)Ψ̃1(x, σ) Q(∂)Ψ̃2(x, σ) Q(∂)Ψ̃3(x, σ) [0]3×1 [0]3×1

Q(∂)Ψ̃6(x, σ) Q(∂)Ψ̃7(x, σ) Q(∂)Ψ̃8(x, σ) [0]3×1 [0]3×1

Q(∂)Ψ̃11(x, σ) Q(∂)Ψ̃12(x, σ) Q(∂)Ψ̃13(x, σ) [0]3×1 [0]3×1

[0]1×3 [0]1×3 [0]1×3 0 0

[0]1×3 [0]1×3 [0]1×3 0 0


(4.21)

+



[0]3×3 [0]3×3 [0]3×3 ∇>Ψ ′4(x, σ) ∇>Ψ ′5(x, σ)

[0]3×3 [0]3×3 [0]3×3 ∇>Ψ ′9(x, σ) ∇>Ψ ′10(x, σ)

[0]3×3 [0]3×3 [0]3×3 ∇>Ψ ′14(x, σ) ∇>Ψ ′15(x, σ)

∇Ψ ′16(x, σ) ∇Ψ ′17(x, σ) ∇Ψ ′18(x, σ) 0 0

∇Ψ ′21(x, σ) ∇Ψ ′22(x, σ) ∇Ψ ′23(x, σ) 0 0




,

where

Ψl(x, σ) =
11∑
j=1

pj a
(j)
l

ei λj |x|

|x|
, l = 1, 7, 8, 12, 13, 19, 20, 24, 25,

Ψ̃l(x, σ) = −
11∑
j=1

pj b
(j)
l

ei λj |x|

|x|
, l = 1, 2, 3, 6, 7, 8, 11, 12, 13,

Ψ ′l(x, σ) = i

11∑
j=1

pj c
(j)
l

ei λj |x|

|x|
, l = 4, 5, 9, 10, 14, 15, 16, 17, 18, 21, 22, 23.

Remark 4.1. Note that (4.20) can be rewritten in the form

Γ(x, σ) =

11∑
j=1

Φ(j)(x, σ), (4.22)

where

Φ(j)(x, σ) =
pj

4π d1
M(i ∂, σ)

eiλj |x|

|x|
, (4.23)

and M(i ∂, σ) is defined by (4.17). Since M(i ∂, σ) is a matrix differential operator with constant
coefficients, from the representation (4.23) it follows that the entries of the matrix Φ(j)(x, σ) =[
Φ

(j)
pq (x, σ)

]
11×11

are metaharmonic functions corresponding to the wave number λj , i.e., they are

solutions of the Helmholtz equation

(∆ + λ2
j ) Φ(j)

pq (x, σ) = 0, |x| 6= 0,

and decay exponentially at infinity:

∂

∂|x|
Φ(j)
pq (x, σ)− i λj Φ(j)

pq (x, σ) = exp{−Imλj |x|}O(|x|−2), p, q = 1, 11,

as |x| → +∞. The entries of the matrix Φ(j)(x, σ) and its derivatives likewise satisfy at infinity the
following decay conditions [16]:

Φ
(j)
pq (x, σ) = exp{−Imλj |x|}O(|x|−1),

∂

∂xl
Φ(j)
pq (x, σ)− i λj

xl
|x|

Φ(j)
pq (x, σ) = exp{−Imλj |x|}O(|x|−2), l = 1, 2, 3.

These asymptotic relations can be differentiated any times with respect to the variable x.
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In accordance with formulas (4.22), (4.23) and Corollary A.2 (see Appendix A) we see that for
Imσ = σ2 > 0 the entries of the matrix Γ(x, σ) decay exponentially as |x| → ∞, since Imλj > 0,
j = 1, 11.

Remark 4.2. Note that the matrix Γ∗(x, σ) := [Γ(−x, σ)]> represents a fundamental solution to the

formally adjoint differential operator L∗(∂, σ) ≡
[
L(−∂, σ)

]>
,

L∗(∂, σ)
[
Γ(−x, σ)

]>
= I11 δ(x).

In the case of repeated roots the fundamental solution can be obtained from (4.20) by the standard
limiting procedure.

5. Principal Singular Part of the Fundamental Matrix

The principal singular part Γ0(x) of the fundamental matrix (4.21) represents an 11 × 11 funda-
mental matrix of the operator L0(∂) defined by (3.9), (3.10) and solves the equation

L0(∂)Γ0(x) = δ(x)I11.

It is easy to show that

Γ0(x) =


Γ

(1)
0 (x) [0]3×3 [0]3×3 [0]3×1 [0]3×1

[0]3×3 Γ
(7)
0 (x) [0]3×3 [0]3×1 [0]3×1

[0]3×3 [0]3×3 Γ
(13)
0 (x) [0]3×1 [0]3×1

[0]1×3 [0]1×3 [0]1×3 Γ
(19)
0 (x) 0

[0]1×3 [0]1×3 [0]1×3 0 Γ
(25)
0 (x)


11×11

,

where

Γ
(1)
0 (x) = − 1

8π µ

{ 2

|x|
I3 −

λ0 + µ

λ0 + 2µ
Q(∂)|x|

}
,

Γ
(7)
0 (x) = − 1

8π h6

{ 2

|x|
I3 −

h4 + h5

h0
Q(∂)|x|

}
,

Γ
(13)
0 (x) = − 1

8π k6

{ 2

|x|
I3 −

k4 + k5

k0
Q(∂)|x|

}
,

Γ
(19)
0 (x) = − 1

4π h |x|
,

Γ
(25)
0 (x) = − 1

4π k |x|
.

Note that Γ0(x) = Γ>0 (x) = Γ0(−x) and the entries of the matrix Γ0(x) are homogeneous functions
of order −1. For an arbitrary multi-index α = (α1, α2, α3) and an arbitrary complex number σ it can
easily be shown that in a neighbourhood of the origin (i.e., for small |x|)

∂α[Γ(x, σ)− Γ0(x)] = O(|x|−α), |α| = α1 + α2 + α3,

which shows that Γ0(x) is a principal singular part of the matrix Γ(x, σ).

6. Potentials and Their Properties

Let us introduce the generalized single and double-layer potentials, and the Newton type volume
potential,

V (ϕ)(x) =

∫
S

Γ(x− y, σ)ϕ(y) dSy, x ∈ R3 \ S, (6.1)
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W (ϕ)(x) =

∫
S

[
P∗(∂y, n(y))Γ>(x− y, σ)

]>
ϕ(y) dSy, x ∈ R3 \ S, (6.2)

NΩ±(ψ)(x) =

∫
Ω±

Γ(x− y, σ)ψ(y) dy, x ∈ R3, (6.3)

where Γ(,̇σ) is the fundamental matrix given by (4.20) or (4.21), ϕ = (ϕ1, ϕ2, . . . , ϕ11)> is a density
vector-function defined on S, while a density vector-function ψ = (ψ1, . . . , ψ11)> is defined on Ω±

and we assume that in the case of Ω− the support of the density vector-function ψ of the Newtonian
potential (6.3) is a compact set, P∗(∂y, n(y)) is the boundary differential operator defined by (2.20).
It can be checked that the potentials defined by (6.1) and (6.2) are C∞-smooth in R3 \ S and solve
the homogeneous equation L(∂, σ)U = 0 in R3 \S for an arbitrary continuous vector function ϕ. The
volume potential solves the nonhomogeneous equation

L(∂, σ)NΩ±(ψ) = ψ in Ω± for ψ ∈ C0,α(Ω±). (6.4)

Theorem 6.1. Let S = ∂Ω+ be C1, γ ′smooth with 0 < γ ′ ≤ 1, σ = σ1 + i σ2 with σ2 > 0, and let U
be a regular vector function of the class C2(Ω+). Then the integral representation formula

W ({U}+)(x)− V ({PU}+)(x) +NΩ+(L(∂, σ)U)(x) =

{
U(x) for x ∈ Ω+,

0 for x ∈ Ω−.

holds.

This follows from Green’s formula (3.7) (see [4, Appendix D]).
Similar representation formula holds in the exterior domain Ω− if the vector U and its derivatives

possess some asymptotic properties at infinity. In particular, the following assertion holds.

Theorem 6.2. Let S = ∂Ω− be C1, γ ′smooth with 0 < γ ′ ≤ 1 and let U be a regular vector of the
class C2(Ω−) such that for any multi-index α = (α1, α2, α3) with 0 ≤ |α| = α1 + α2 + α3 ≤ 2, the
function ∂αUj is polynomially bounded at infinity, i.e., for sufficiently large |x|,

|∂ αUj(x)| ≤ C0 |x|m, j = 1, 2, . . . , 11,

with some constants m and C0 > 0. Then the integral representation formula

−W ({U}−)(x) + V ({PU}−)(x) +NΩ−(L(∂, σ)U)(x) =

{
0 for x ∈ Ω+,

U(x) for x ∈ Ω−,

where σ = σ1 + i σ2 with σ2 > 0, holds.

The proof immediately follows from Theorem 6.1 and Remark 4.1.
From Theorem 6.2, it follows immediately that if U ∈ C2(Ω−) grows at infinity polynomially,

and L(∂, σ)U possesses a compact support, then actually U and its all partial derivatives decay
exponentially at infinity and the following Green’s formula∫

Ω−

U ′ · L(∂, σ)Udx = −
∫

∂Ω−

{U ′}− · {P(∂, n)U}−dS −
∫

Ω−

E(U ′, U)dx (6.5)

holds for all polynomially bounded vector functions U ′ ∈ C1(Ω−).
Now let us consider the mapping and regularity properties of the single and double-layer potentials

and the boundary pseudodifferential operators generated by them in the Hölder Cm,γ
′

spaces. They
can be established by standard methods. We remark only that the layer potentials corresponding
to the fundamental matrices with different values of the parameter σ have the same smoothness
properties and possess the same jump relations. Therefore, using the word for word arguments given in
[3,4,8,9,11–14], we can prove the following theorems concerning the above-introduced layer potentials.
Unless otherwise stated, for simplicity, we assume that

S = ∂Ω± ∈ Cm, γ
′

with integer m ≥ 2 and 0 < γ ′ ≤ 1;

σ = σ1 + i σ2, σ1 ∈ R, Imσ = σ2 > 0.
(6.6)
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Theorem 6.3. Let S, m, and γ ′ be as in (6.6), 0 < δ′ < γ ′, and let k ≤ m− 1 be an integer. Then
the operators

V : Ck, δ
′
(S)→ Ck+1, δ′(Ω±), W : Ck, δ

′
(S)→ Ck, δ

′
(Ω±) (6.7)

are continuous. For any g ∈ C 0, δ′(S), h ∈ C 1, δ′(S), and any x ∈ S,

[V (g)(x) ]± = V (g)(x) = H g(x), (6.8)

{P(∂x, n(x))V (g)(x) }± =
[
∓ 2−1I11 +K

]
g(x), (6.9)

{W (g)(x) }± =
[
± 2−1I11 +N

]
g(x), (6.10)

{P(∂x, n(x))W (h)(x) }+ = {P(∂x, n(x))W (h)(x) }− = Lh(x), (6.11)

where

H g(x) :=

∫
S

Γ(x− y, σ) g(y) dSy , (6.12)

K g(x) :=

∫
S

[
P(∂x, n(x)) Γ(x− y, σ)

]
g(y) dSy , (6.13)

N g(x) :=

∫
S

[
P∗(∂y, n(y)) Γ>(x− y, σ)

]>
g(y) dSy , (6.14)

Lh(x) := lim
Ω±3z→x∈S

P(∂z, n(x))

∫
S

[
P∗(∂y, n(y)) Γ>(z − y, σ)

]>
h(y) dSy . (6.15)

The proof of the relations (6.7)–(6.11) can be performed by standard arguments (see, e.g., [6,8,12]).
The relation (6.11) is called the Liapunov-Tauber type theorem.

With the help of the explicit form of the fundamental matrix Γ(x − y, σ) it can be shown that
the operators K and N are singular integral operators, H is a smoothing (weakly singular) integral
operator, while L is a singular integro-differential operator.

Theorem 6.4. Let S, m, γ′, δ′ and k be as in Theorem 6.3. Then the operators

H : Ck, δ
′
(S)→ Ck+1, δ′(S) , (6.16)

K : Ck, δ
′
(S)→ Ck, δ

′
(S) , (6.17)

N : Ck, δ
′
(S)→ Ck, δ

′
(S) , (6.18)

L : Ck, δ
′
(S)→ Ck−1, δ′(S) , (6.19)

are continuous. Moreover, 1) the principal homogeneous symbol matrices of the operators ±2−1I11 +K
and ±2−1I11+N are non-degenerate, while the principal homogeneous symbol matrices of the operators
−H and L are positive definite; 2) the operators H, ±2−1I11 +K, ±2−1I11 +N , and L are elliptic
pseudodifferential operators (of order −1, 0, 0, and 1, respectively) with zero index; in appropriate
function spaces, the following equalities 3)

N H = HK, LN = KL,

HL = −4−1 I11 +N 2, LH = −4−1 I11 +K2.
(6.20)

hold.

The mapping properties (6.16)–(6.19) are standard and can be proved as their counterparts in
[8,11,13,14]. Items 1) and 2) are based on the positive definiteness of the potential energy functional
and positive definiteness of the symbol matrix L0(ξ) for ξ = (ξ1, ξ2, ξ3) ∈ R3 \ {0} (see (3.9), (3.10)),
(cf. [3, 4, 10, 11, 14] and [6]). Item 3) follows from the jump relations for the layer potentials and the
general integral representation formulas of solutions to the homogeneous equation L(∂, σ)U = 0.
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7. Formulation of Boundary Value Problems and Uniqueness Theorems

Let us formulate the basic interior and exterior boundary value problems for the domains Ω+ and
Ω−. We assume that S = ∂Ω+ ∈ C1,γ ′ , 0 < γ ′ ≤ 1.

Problem (I(σ))± (The Dirichlet problem). Find a regular solution vector function U =
(u,C, T, P, ϑ)> to the system of differential equations

L(∂, σ)U(x) = Φ±(x), x ∈ Ω±, (7.1)

satisfying the boundary condition

{U(z)}± = f(z), z ∈ S. (7.2)

Problem (II(σ))± (The Neumann problem). Find a regular solution vector function U =
(u,C, T, P, ϑ)> to system (7.1), satisfying the boundary condition

{P(∂, n)U(z)}± = F (z), z ∈ S. (7.3)

We assume that the data of the boundary value problems belong to the appropriate classes,

Φ± ∈ C0,α′(Ω)±, f ∈ C1,α′(S), F ∈ C0,α′(S), 0 < α′ < γ ′ ≤ 1.

In addition, in the case of exterior problems we assume that the vector function Φ− is compactly
supported in Ω−. Now we prove the following uniqueness theorem.

Theorem 7.1. Let σ = σ1 + iσ2, with σ1 ∈ R and σ2 > 0. Then the homogeneous boundary value
problems (I(σ))± and (II(σ))± have only the trivial solution in the class of regular vector functions.

Proof. Let U = (u,C, T, P, ϑ)> be a regular solution of the homogeneous boundary value problem
(I(σ))± or (II(σ))±. Apply Green’s formula (3.1) or (6.5) for the vector functions U and U ′, where

U ′ =
(
i σ u, C, T , P ,

1

T0
ϑ
)>
.

Keeping in mind (3.3)–(3.6), we get the following relation:

±
∫

∂Ω±

{U ′}± · {P(∂, n)U}±dS −
∫

Ω±

E(U ′, U)dx = 0, (7.4)

where

E(U ′, U) =i σE(1)(u, u) + E(2)(C,C) + E(3)(T , T )− i σ (γ2 P + γ1ϑ) div u− i ρ σ |σ|2 |u|2

− δ |C|2 − i σ κ1C · T + h3C · gradP − κ0 |T |2 − i σ κ1T · C + k3T · gradϑ

− i σ m|P |2 − i σ γ2 P div u− i σ κ P ϑ+ h1 C · gradP + h | gradP |2

+
k

T0
| gradϑ|2 − i σ c |ϑ|2 − i σ γ1 ϑ div u− i σ κ P ϑ+

k1

T0
T · gradϑ;

E(1)(u, u) =
3λ0 + 2µ

3
|div u|2 +

µ

3

3∑
k,j=1

∣∣∣∣∂uk∂xk
− ∂uj
∂xj

∣∣∣∣2 +
µ

2

3∑
k,j=1, k 6=j

∣∣∣∣∂uk∂xj
+
∂uj
∂xk

∣∣∣∣2 , (7.5)

E(2)(C,C) =
3h4 + h5 + h6

3
|divC|2 +

h6 − h5

2
| curlC|2

+
h5 + h6

4

3∑
k,j=1, k 6=j

∣∣∣∣∂Ck∂xj
+
∂Cj
∂xk

∣∣∣∣2 +
h5 + h6

6

3∑
k,j=1

∣∣∣∣∂Ck∂xk
− ∂Cj
∂xj

∣∣∣∣2 , (7.6)

E(3)(T , T ) =
3k4 + k5 + k6

3
|div T |2 +

k6 − k5

2
| curlT |2

+
k5 + k6

4

3∑
k,j=1, k 6=j

∣∣∣∣∂Tk∂xj
+
∂Tj
∂xk

∣∣∣∣2 +
k5 + k6

6

3∑
k,j=1

∣∣∣∣∂Tk∂xk
− ∂Tj
∂xj

∣∣∣∣2 . (7.7)
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Since U = (u,C, T, P, ϑ)> solves the homogeneous boundary value problem (I(σ))±, or (II(σ))±, the
surface integral in (7.4) vanishes and we arrive at the equation∫

Ω±

E(U ′, U)dx = 0.

The real part of this equation reads as∫
Ω±

{
σ2E

(1)(u, u) + E(2)(C,C) + E(3)(T , T ) + ρ σ2 |σ|2|u|2

+σ2

[
m |P |2 + κ (Pϑ+ Pϑ) + c|ϑ|2

]
+ σ2

[
m1|C|2 + κ1 (C · T + C · T ) + c1 |T |2

]
+

1

2

[
2h2|C|2 + (h1 + h3) (C · gradP + C · gradP ) + 2h | gradP |2

] (7.8)

+
1

2T0

[
2 k2 T0 |T |2 + (k1 + T0 k3) (T · gradϑ+ T · gradϑ) + 2 k | gradϑ|2

]}
dx = 0,

By means of relations (7.5)–(7.7) we see that E(1)(u, u) ≥ 0, E(2)(C,C) ≥ 0, and E(3)(T , T ) ≥ 0.
Transforming the integrand and taking into account conditions (2.6), we establish

m|P |2 + κ (Pϑ+ Pϑ) + c|ϑ|2 =
1

c

[
(mc− κ2) |P |2 + |κ P + cϑ|2

]
≥ 0,

m1|C|2 + κ1 (C · T + C · T ) + c1 |T |2 =
1

c1

[
(m1 c1 − κ2

1)|C|2 + |κ1 C + c1 T |2
]
≥ 0,

1

2

[
2h2|C|2 + (h1 + h3)(C · gradP + C · gradP ) + 2h | gradP |2

]
=

1

4h

{[
4hh2 − (h1 + h3)2

]
|C|2 + |(h1 + h3)C + 2h gradP |2

}
≥ 0,

1

2T0

[
2 k2 T0 |T |2 + (k1 + T0 k3)(T · gradϑ+ T · gradϑ) + 2 k | gradϑ|2

]
=

1

4k T0

{ [
4T0 k k2 − (k1 + T0 k3)2

]
|T |2 + |(k1 + T0 k3)T + 2k gradϑ|2

}
≥ 0.

Consequently, from (7.8) we derive ReE(U ′, U) ≥ 0 in Ω±, implying U = 0 for x ∈ Ω±.
�

8. Existence Results

Now, we apply the potential method and prove the existence theorems for the above formulated
Dirichlet and Neumann type boundary value problems. We reduce these problems to the equivalent
integral equations on the boundary of the elastic body under consideration and investigate their
Fredholm properties. We show that the corresponding integral operators are invertible. Without
loss of generality, we consider the boundary value problems for the homogeneous differential equation
L(∂, σ)U = 0, since a particular solution to the nonhomogeneous equation (7.1) can be written
explicitly in the form of the volume potential NΩ±(Φ±) (see (6.4)). Moreover, throughout this section
we assume that the conditions (6.6) are fulfilled, unless otherwise stated.

8.1. Investigation of the interior and exterior Dirichlet problems. We assume that Φ(±) =
0 and look for solutions in Ω± in the form of the double-layer potential U = W (h) (see (6.2)).
Applying the jump relations for the double-layer potential (see Theorem 6.3) and taking into accoun
the boundary conditions (7.2), for the unknown density vector function h = (h1, h2, . . . , h11)> we get
the following boundary integral equations:[

2−1I11 +N
]
h = f on S, (8.1)

in the case of Problem (I(σ))+, and[
− 2−1I11 +N

]
h = f on S, (8.2)
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in the case of Problem (I(σ))−.
Here, the operator N is given by (6.14). Due to Theorem 6.4, the operators ±2−1I11 +N are singular
integral operators of normal type with index zero. This leads to the following existence theorems.

Theorem 8.1. Let S ∈ C2, ν and f ∈ C1, τ (S) with 0 < τ < ν ≤ 1. Then the boundary value problem

(I(σ))+ is uniquely solvable in the space C1, τ (Ω+) and the solution can be represented by the double-
layer potential W (h) defined by (6.2), where the density h ∈ C1, τ (S) is uniquely defined from the
integral equation (8.1).

Proof. The uniqueness follows from Theorem 7.1. Now, let us show that the singular integral operator

2−1I11 +N : C1, τ (S)→ C1, τ (S) (8.3)

is invertible. Due to Theorem 6.4, we conclude that (8.3) is a Fredholm operator with zero index.
Further, we show that ker

[
2−1I11 + N

]
is trivial. Indeed, let h0 ∈ C1, τ (S) be a solution of the

homogeneous equation [
2−1I11 +N

]
h0 = 0 on S. (8.4)

We construct the double-layer potential W (h0). Evidently, W (h0) ∈ C1, τ (Ω±) by Theorem 6.3. In
view of equation (8.4), we have {W (h0)(x)}+ = 0 for x ∈ S and by the uniqueness Theorem 7.1,
we get W (h0)(x) = 0 for x ∈ Ω+. Consequently, {P(∂, n)W (h0)(x) }+ = 0 for x ∈ S. By the
Liapunov-Tauber theorem (see Theorem 6.3)

{P(∂, n)W (h0)(x)}+ = {P(∂, n)W (h0)(x) }− = 0, x ∈ S,
i.e., W (h0) solves the homogeneous exterior Neumann type boundary value problem (II(σ))− and
decays at infinity exponentially. Therefore, W (h0)(x) = 0 in Ω− by Theorem 7.1. Since

{W (h0)(x)}+ − {W (h0)(x)}− = 2h0(x), x ∈ S,
we conclude that h0 = 0 on S, which shows that the null space of the operator 2−1I11 +N is trivial.
Therefore, (8.3) is invertible. �

Quite similarly, with the help of Theorem 7.1, we can show that the operator

−2−1I11 +N : C1, τ (S)→ C1, τ (S) (8.5)

is invertible, which leads to the existence theorem for the Dirichlet type exterior boundary value
problem.

Theorem 8.2. Let S ∈ C2, ν and f ∈ C1, ν(S) with 0 < τ < ν ≤ 1. Then the boundary value

problem (I(σ))− is uniquely solvable in the class of vector functions belonging to the space C1, τ (Ω−)
and decaying at infinity, and the solution is represented by the double-layer potential W (h) defined by
(6.2), where h ∈ C1, τ (S) is defined by the integral equation (8.2).

8.2. Investigation of the interior and exterior Neumann problems. These problems are for-
mulated in Section 7 as problems (II(σ))+ and (II(σ))−. As above, we assume that Φ(±) = 0 and look
for solutions in Ω± in the form of the single-layer potential U = V (g) (see (6.1)). Taking into consid-
eration the boundary conditions (7.3), for the unknown density vector function g = (g1, g2, . . . , g11)>

we get the following boundary integral equations:[
− 2−1I11 +K

]
g = F on S, (8.6)

in the case of Problem (II(σ))+, and[
2−1I11 +K

]
g = F on S, (8.7)

in the case of Problem (II(σ))−. Here, the operator K is given by (6.13). Due to Theorem 6.4, the
operators ±2−1I11 + K are singular integral operators of normal type with index zero. This leads to
the following existence theorems.

Theorem 8.3. Let S ∈ C1, ν and F ∈ C0, τ (S)] with 0 < τ < ν ≤ 1. Then the boundary value problem

(II(σ))+ is uniquely solvable in the space C1, τ (Ω+) and the solution is represented by the single-layer
potential V (g) defined by (6.1), where g ∈ C0, τ (S) is uniquely defined by the integral equation (8.6).
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Proof. The uniqueness is a consequence of the uniqueness Theorem 7.1. Now, we show that the
operator

− 2−1I11 +K : C0, τ (S)→ C0, τ (S) (8.8)

is invertible. Due to Theorem 6.4, the operator (8.8) is a Fredholm operator with zero index. Therefore,
it remains to show that the null space of the operator −2−1I11 +K is trivial. Let g0 ∈ C0, τ (S) solve
the homogeneous equation

[− 2−1I11 +K ] g0 = 0 on S.

Construct the single-layer potential V (g0). Evidently, V (g0) ∈ C1, τ (Ω+) due to Theorem 6.3. More-
over, V (g0) solves the homogeneous Problem (II(σ))+ and therefore it vanishes identically in Ω+, due
to Theorem 7.1. Further, by Theorem 6.3, we have {V (g0)(x) }+ = {V (g0)(x) }− = 0 for x ∈ S, and
since it exponentially decays at infinity, by the uniqueness theorem for the Dirichlet exterior boundary
value problem, we conclude V (g0)(x) = 0 for x ∈ Ω−. Finally, with the help of the jump relation

{P(∂, n)V (g0)(x) }− − {P(∂, n)V (g0)(x) }+ = 2 g0 (x), x ∈ S,

we derive g0 = 0 on S. Thus, the operator (8.8) is invertible. �

By the word for word arguments we can prove that the operator

2−1I11 +K : C0, τ (S)→ C0, τ (S) (8.9)

is invertible, which leads to the existence theorem for the Neumann type exterior boundary value
problem.

Theorem 8.4. Let S ∈ C1, ν and F ∈ C0, τ (S) with 0 < τ < ν ≤ 1. Then the boundary value problem

(II(σ))− is uniquely solvable in the class of vector functions belonging to the space C1, τ (Ω−) and
decaying at infinity, and the solution is represented by the single-layer potential V (g) defined by (6.1),
where g ∈ C0, τ (S) is a unique solution of the integral equation (8.7).

8.3. Investigation of the basic boundary value problems by the first kind integral equa-
tions. Here we apply an alternative approach and reduce the basic interior and exterior boundary
value problems, considered in the previous subsections, to the first kind integral equations (cf. [14]).
These results play a crucial role in the study of mixed boundary value problems.

9.3.1. Investigation of the Dirichlet problem with the help of the first kind integral
equations. We look for a solution to the problems (I(σ))+ and (I(σ))− (see (7.1)–(7.2) with Φ(±) = 0)
in the form of the single-layer potential U = V (g) (see (6.1)). In both cases, for the interior and exterior
boundary value problems, we arrive at the equation

H g = f on S, (8.10)

where H is defined by (6.12). We have the following existence theorem.

Theorem 8.5. Let S ∈ C2, ν and f ∈ C1, τ (S) with 0 < τ < ν ≤ 1. Then the boundary value problems

(I(σ))± are uniquely solvable in the class of vector functions belonging to the space C1, τ (Ω±) and
decaying at infinity, and the solution is represented by the single-layer potential V (g) defined by (6.1),
where g ∈ C0, τ (S) is a unique solution of the integral equation (8.10).

Proof. The uniqueness follows from Theorem 7.1. Evidently, it remains to show the invertibility of
the operator

H : C0, τ (S)→ C1, τ (S). (8.11)

To this end, we apply the operator L (see (6.15)) to both sides of equation (8.10) and take into
consideration the operator equalities (6.20),

LHg ≡
[
− 4−1I1 +K2

]
g = Lf on S. (8.12)

Clearly, Lf ∈ C0, τ (S) due to Theorem 6.4. Since the operators (8.8) and (8.9) are invertible, we
conclude that the singular integral operator

LH =
[
− 2−1I11 +K

] [
2−1I11 +K

]
: C0, τ (S)→ C0, τ (S)
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is invertible, as well. Therefore, from (8.12), we get the following representation of a solution of
equation (8.10),

g =
[
− 4−1 +K2

]−1 Lf ∈ C0, τ (S).

With the help of the uniqueness Theorem 7.1, one can easily show that the operators

H : C0, τ (S)→ C1, τ (S), L : C1, τ (S)→ C0, τ (S) (8.13)

are injective. Therefore, equations (8.10) and (8.12) are equivalent and the operator (8.11) is invertible,
which completes the proof. �

Corollary 8.6. A solution U ∈ C1, τ (Ω±) of the boundary value problems (I(σ))± with Φ(±) = 0 is
uniquely representable in the form

U(x) = V (H−1f)(x), x ∈ Ω±,

where f = {U}± on S and
H−1 : C1, τ (S)→ C0, τ (S)

is the inverse to the operator (8.11).

This representation plays a crucial role in the investigation of mixed boundary value problems
(cf. [14]).

9.3.2. Investigation of the Neumann problem with the help of the first kind integral
equations. We look for a solution to the problems (II(σ))+ and (II(σ))− (see (7.1), (7.3) with
Φ± = 0) in the form of the double-layer potential U = W (h) (see (6.2)). In both cases, for the interior
and exterior boundary value problems, we arrive at the equation

Lh = F on S, (8.14)

where L is defined by (6.15). We have the following existence theorem.

Theorem 8.7. Let S ∈ C2, ν and F ∈ C0, τ (S) with 0 < τ < ν ≤ 1. Then the boundary value problems

(II(σ))± are uniquely solvable in the class of vector functions belonging to the space C1, τ (Ω±) and
decaying at infinity, and the solution is represented by the double-layer potential W (h) defined by (6.2),
where h ∈ C1, τ (S) is a unique solution of the integral equation (8.14).

Proof. The uniqueness follows from Theorem 7.1. Evidently, it remains to show the invertibility of
the operator

L : C1, τ (S)→ C0, τ (S). (8.15)

To this end, we apply the operator H (see (6.12)) to both sides of equation (8.14) and take into
consideration the operator equalities (6.20),

HLh ≡
[
− 4−1I11 +N 2

]
h = HF on S. (8.16)

Clearly, HF ∈ C1, τ (S) due to Theorem 6.4. Since the operators (8.3) and (8.5) are invertible, we
conclude that the singular integral operator

HL =
[
− 2−1I11 +N

] [
2−1I11 +N

]
: C1, τ (S)→ C1, τ (S)

is invertible, as well. Therefore, from (8.16), for a solution of equation (8.14), we get the following
representation formula:

h =
[
− 4−1I11 +N 2

]−1HF ∈ C1, τ (S).

Since the operators (8.13) are injective, we conclude that equations (8.14) and (8.16) are equivalent
and the operator (8.15) is invertible, which completes the proof. �

Corollary 8.8. A solution U ∈ C1, τ (Ω±) of the boundary value problems (II(σ))± with Φ± = 0 is
uniquely representable in the form

U(x) = W (L−1F )(x), x ∈ Ω±,

where F = {P(∂, n)U}± on S and

L−1 : C0, τ (S)→ C1, τ (S)

is the inverse to the operator (8.15).
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9. Appendix A: Properties of the Characteristic Roots

Here, we investigate the properties of roots of equation (4.6) with respect to r. In particular, we
prove the following assertion.

Lemma A.1. Let us assume that σ = σ1 + i σ2 is a complex parameter, where σ1 ∈ R and σ2 > 0.
Then

detL(−i ξ, σ) 6= 0

for arbitrary ξ ∈ R3.

Proof. We prove the lemma by contradiction. Let detL(−i ξ, σ) = 0, ξ ∈ R3. Then the system of
linear equations L(−i ξ, σ)X = 0 has a nontrivial solution X ∈ C11 \ {0} which can be written as

X = (X(1), X(2), X(3), X(4), X(5))>, where X(j) = (X
(j)
1 , X

(j)
2 , X

(j)
3 )> ∈ C3, j = 1, 2, 3 and X(j) ∈ C,

j = 4, 5, are scalars. Taking into consideration (2.14), the system L(−i ξ, σ)X = 0 can be rewritten
as follows:

L(j)(−i ξ, σ)X(1) + L(j+5)(−i ξ, σ)X(2) + L(j+10)(−i ξ, σ)X(3)

+L(j+15)(−i ξ, σ)X(4) + L(j+20)(−i ξ, σ)X(5) = 0,

j = 1, 2, 3, 4, 5,

implying [
(−µ |ξ|2 + ρ σ2) I3 − (λ0 + µ)Q(ξ)

]
X(1) + iγ2ξ

>X(4) + iγ1 ξ
>X(5) = 0, (A.1)[

(δ − h6 |ξ|2) I3 − (h4 + h5)Q(ξ)
]
X(2) + i σ κ1X

(3) + i h3 ξ
>X(4) = 0, (A.2)

i σ κ1X
(2) +

[
(κ0 − k6|ξ|2) I3 − (k4 + k5)Q(ξ)

]
X(3) + i k3 ξ

>X(5) = 0, (A.3)

σ γ2 ξ ·X(1) − i h1 ξ ·X(2) + (i σ m− h |ξ|2)X(4) + i σ κX(5) = 0, (A.4)

σ γ1 T0 ξ ·X(1) − ik1 ξ ·X(3) + i σ T0 κX(4) +
(
i σ c T0 − k |ξ|2

)
X(5) = 0. (A.5)

Let us take the dot products of equations (A.1), and (A.2) by the vectors −i σ X(1) and −X(2) respec-

tively, multiply equality (A.3) by the vector −X(3), then multiply complex conjugates of equations
(A.4) and (A.5) by the functions −X(4) and − 1

T0
X(5) respectively and sum up the results to obtain

i σ
[
µ |ξ|2 − ρ σ2

] ∣∣X(1)
∣∣2 + i σ (λ0 + µ)

∣∣ξ ·X(1)
∣∣2 +

[
h6 |ξ|2 − δ

] ∣∣X(2)
∣∣2 + (h4 + h5)

∣∣ξ ·X(2)
∣∣2

− i σ κ1

[
X(2) ·X(3) +X(2) ·X(3)

]
− i h3

(
ξ ·X(2)

)
X(4) +

[
k6 |ξ|2 − κ0

] ∣∣X(3)
∣∣2

+ (k4 + k5)
∣∣ξ ·X(3)

∣∣2 − i k3

(
ξ ·X(3)

)
X(5) − i h1

(
ξ ·X(2)

)
X(4) +

[
i σ m+ h |ξ|2

] ∣∣X(4)
∣∣2

+ i σ κ
[
X(4)X(5) +X(4)X(5)

]
− i k1

T0

(
ξ ·X(3)

)
X(5) +

[
i σ c+

k

T0
|ξ|2
] ∣∣X(5)

∣∣2 = 0.

By separating the real part from this equation, we deduce

σ2

[
µ |ξ|2 + ρ |σ|2

]∣∣X(1)
∣∣2 + σ2(λ0 + µ)

∣∣ξ ·X(1)
∣∣2 + h6 |ξ|2

∣∣X(2)
∣∣2 + (h4 + h5)

∣∣ξ ·X(2)
∣∣2

+ k6 |ξ|2
∣∣X(3)

∣∣2 + (k4 + k5)
∣∣ξ ·X(3)

∣∣2 + σ2

[
m1

∣∣X(2)
∣∣2 + κ1

(
X(2) ·X(3) +X(2) ·X(3)

)
+ c1

∣∣X(3)
∣∣2]

+
1

2

{
2h2

∣∣X(2)
∣∣2 − i (h1 + h3)

[(
ξ ·X(2)

)
X(4) −

(
ξ ·X(2)

)
X(4)

]
+ 2h |ξ|2

∣∣X(4)
∣∣2} (A.6)

+
1

2T0

{
2T0 k2

∣∣X(3)
∣∣2 − i (k1 + T0 k3)

[(
ξ ·X(3)

)
X(5) −

(
ξ ·X(3)

)
X(5)

]
+ 2k |ξ|2

∣∣X(5)
∣∣2}

+ σ2

[
m
∣∣X(4)

∣∣2 + κ
(
X(4) ·X(5) +X(4) ·X(5)

)
+ c

∣∣X(5)
∣∣2 ] = 0.
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With the help of the following relations and inequalities (2.6),∣∣ξ∣∣2∣∣X(j)
∣∣2 − ∣∣ξ ·X(j)

∣∣2 =
∣∣ ξ ×X(j)

∣∣2, j = 1, 2, 3,

h6

∣∣ξ∣∣2∣∣X(2)
∣∣2 + (h4 + h5)

∣∣ξ ·X(2)
∣∣2 = h0

∣∣ξ ·X(2)
∣∣2 + h6

∣∣ [ξ ×X(2)
] ∣∣2 ≥ 0,

k6

∣∣ξ∣∣2∣∣X(3)
∣∣2 + (k4 + k5)

∣∣ξ ·X(3)
∣∣2 = k0

∣∣ξ ·X(3)
∣∣2 + k6

∣∣ [ξ ×X(3)
] ∣∣2 ≥ 0,

m1

∣∣X(2)
∣∣2 + κ1

(
X(2) ·X(3) +X(2) ·X(3)

)
+ c1

∣∣X(3)
∣∣2

=
1

c1

{[
m1 c1 − κ2

1

]∣∣X(2)
∣∣2 +

∣∣κ1X
(2) + c1X

(3)
∣∣2} ≥ 0,

m
∣∣X(4)

∣∣2 + κ
(
X(4) ·X(5) +X(4) ·X(5)

)
+ c

∣∣X(5)
∣∣2

=
1

c

{[
mc− κ2

]∣∣X(4)
∣∣2 +

∣∣κX(4) + cX(5)
∣∣2} ≥ 0,

2h2

∣∣X(2)
∣∣2 − i (h1 + h3)

[(
ξ ·X(2)

)
X(4) −

(
ξ ·X(2)

)
X(4)

]
+ 2h |ξ|2

∣∣X(4)
∣∣2

=
1

2h

{[
4hh2 − (h1 + h3)2

]∣∣X(2)
∣∣2 +

∣∣(h1 + h3)X(2) − 2i h ξ>X(4)
∣∣2} ≥ 0,

2T0 k2

∣∣X(3)
∣∣2 − i (k1 + T0 k3)

[(
ξ ·X(3)

)
X(5) −

(
ξ ·X(3)

)
X(5)

]
+ 2k |ξ|2

∣∣X(5)
∣∣2

=
1

2k

{[
4T0 k k2 − (k1 + T0 k3)2

]∣∣X(3)
∣∣2 +

∣∣(k1 + T0 k3)X(3) − 2i k ξ>X(5)
∣∣2} ≥ 0,

from (A.6), we conclude that

X(j) = 0, j = 1, 2, 3, 4, 5.

Thus, the system L(−i ξ, σ)X = 0 possesses only the trivial solution for arbitrary ξ ∈ R3. This
contradiction proves the lemma. �

Corollary A.2. Let σ = σ1 + i σ2 be a complex parameter with σ1 ∈ R and σ2 > 0. Then the equation

Λ(ξ) = detL(−i ξ, σ) = 0

with respect to |ξ| possesses only complex roots ±λj , j = 1, 11 with Im λj > 0, j = 1, 11.
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BOUNDARY-TRANSMISSION PROBLEMS OF THE THEORY OF ACOUSTIC

WAVES FOR PIECEWISE INHOMOGENEOUS ANISOTROPIC

MULTI-COMPONENT LIPSCHITZ DOMAINS

SVETA GORGISHELI1, MAIA MREVLISHVILI1, AND DAVID NATROSHVILI1,2

Abstract. We consider the time-harmonic acoustic wave scattering by a bounded anisotropic inho-

mogeneous obstacle embedded in an unbounded anisotropic homogeneous medium assuming that the

boundary of the obstacle and the interface are Lipschitz surfaces. We assume that the obstacle con-
tains a cavity and the material parameters may have discontinuities across the interface between the

inhomogeneous interior and homogeneous exterior regions. The corresponding mathematical model

is formulated as a boundary-transmission problem for a second order elliptic partial differential
equation of Helmholtz type with piecewise Lipschitz-continuous variable coefficients. The problem

is studied by the so-called nonlocal approach which reduces the problem to a variational-functional

equation containing sesquilinear forms over a bounded region occupied by the inhomogeneous ob-
stacle and over the interfacial surface. This is done with the help of the theory of layer potentials on

Lipschitz surfaces. The coercivity properties of the corresponding sesquilinear forms are analyzed
and the unique solvability of the boundary transmission acoustic problem in appropriate Sobolev-

Slobodetskii and Bessel potential spaces is established.

1. Introduction

The paper deals with the time-harmonic acoustic wave scattering by a bounded anisotropic inho-
mogeneous obstacle embedded in an unbounded anisotropic homogeneous medium. We assume that
the bounded obstacle contains an interior cavity. The boundary of the cavity will be referred to as in-
terior boundary of the obstacle. We require that the interior boundary of the obstacle and the interface
between the inhomogeneous interior and homogeneous exterior regions are the Lipschitz surfaces. The
physical wave scattering problem with a frequency parameter ω ∈ R is formulated mathematically as
a boundary-transmission problem for a second order elliptic partial differential equation with variable

Lipschitz-continuous coefficients, A2(x, ∂x, ω)u(x) ≡ ∂xk
(
a

(2)
kj (x) ∂xju(x)

)
+ ω2 κ2(x)u(x) = f2(x), in

the bounded region Ω2 ⊂ R3 occupied by an inhomogeneous anisotropic obstacle and for a Helmholtz

type equation with constant coefficients, A1(∂x, ω)u(x) ≡ a
(1)
kj ∂xk∂xju(x) +ω2κ1 u(x) = f1(x), in the

unbounded region Ω1 occupied by the homogeneous anisotropic medium. The material parameters

a
(q)
kj and κq, q = 1, 2, are not assumed to be continuous across the interface. Note that in the case

of isotropic medium occupying the domain Ωq, we have only one material coefficient a(q), i.e., the

corresponding material parameters satisfy the relations a
(q)
kj = a(q)δkj , where δkj is the Kronecker

symbol.
We analyse the case when the transmission conditions relating the interior and exterior traces of

the wave amplitude u and its conormal derivatives are prescribed on the interface surface, while on the
interior boundary of the inhomogeneous obstacle there are given the Dirichlet or Neumann or mixed
Dirichlet-Neumann boundary conditions.

The transmission problems for the Helmholtz equation in the case of the whole piecewise homogenous
isotropic space R3 = Ω2∪Ω1 with a smooth interface surface S = ∂Ω1 = ∂Ω2, when A2(∂) = ∆+κ2ω

2

and A1(∂) = ∆ + κ1ω
2, κq = const, q = 1, 2, are well studied in [14, 24–26] (see also references

therein). In these papers, using the method of standard direct and indirect boundary integral equations
method the transmission problem is reduced to a uniquely solvable coupled pair of boundary integral

2020 Mathematics Subject Classification. 35A15, 35D30, 35J20, 35P25, 35R05.
Key words and phrases. Acoustic scattering; Helmholtz operator; Lipschitz domain; Transmission problem; Layer

potentials; Weak solution.
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equations for a pair of unknowns. Moreover, in [25], by coupling the direct and indirect approaches, the
transmission problem is reduced to a uniquely solvable single integral equation for a single unknown.

Using the harmonic analysis technique and the approach employed in the reference [26], the same
transmission problem for the whole piecewise homogenous isotropic space R3 = Ω2 ∪ Ω1 with a
Lipschitz interface is considered in [40] using the potential method. Note that the harmonic analysis
approach gives the optimal L2 results, establishes the nontangential almost everywhere convergence of
the solution to the boundary values, guarantees the boundedness of the corresponding nontangential
maximal function, which in turn give better regularity results (see, e.g., [22]).

Similar acoustic scattering problems for the whole isotropic composed space R3 = Ω2 ∪ Ω1 with
smooth interface and with a variable continuous refractive index κ(x), when κ(x) = 1 in the exterior
domain Ω1, are also well presented in the literature. In this case, A2(x, ∂x, ω) = ∆ + ω2κ(x) in
the isotropic inhomogeneous obstacle region and A1(∂x, ω) = ∆ + ω2 in the unbounded homogeneous
isotropic region. The problem is reduced to the Lippmann-Schwinger equation which is unconditionally
solvable Fredholm type integral equation on the bounded obstacle region Ω1 (see [12,35] and references
therein).

Analogous acoustic transmission problem in the whole composed space R3 = Ω2∪Ω1 with a smooth
interface, corresponding to a more general isotropic case, when A2(x, ∂x, ω) = ∂xk

(
a(x) ∂xj

)
+ω2 with

a sufficiently smooth function a(x) and A1(∂x, ω) = ∆ + ω2, was analysed by the indirect boundary-
domain integral equation method in the references [28,44,45].

The transmission problem for the whole composed anisotropic space R3 = Ω2 ∪ Ω1 in the case

of a smooth interface and sufficiently smooth in Ω2 material coefficients a
(2)
kj and κ2 is studied in

[10] by a special direct method based on the application of localized harmonic parametrix. This
approach reduces the transmission problem to the uniquely solvable system of localized boundary-
domain integral equations.

In this paper, we investigate more general anisotropic boundary-transmission problems using the
so-called nonlocal approach when the interior boundary of the obstacle and the interface surface are

Lipschitz manifolds, and the coefficients a
(2)
kj and κ2 are Lipschitz-continuous. Moreover, we consider in

detail the case when the mixed Dirichlet-Neumann conditions are prescribed on the interior boundary.
We apply the theory of layer potentials on Lipschitz surfaces and reduce equivalently the boundary-

transmission problem to the variational-functional equation containing sesquilinear forms over the in-
terfacial surface and over a bounded domain occupied by the inhomogeneous obstacle. To substantiate
our approach, we use essentially the results of [13, 21, 22], and the so-called combined field integral
equations approach described in [6, 8, 27,36] (see also [7]).

The paper is organized as follows. In Section 2, we introduce the generalized radiation conditions
for anisotropic media, formulate the acoustic transmission problems for multi-component piecewise
anisotropic structures with Lipschitz-continuous boundaries and interfaces, and prove the uniqueness
theorems in appropriate function spaces. In Section 3, we construct the generalized Steklov–Poincaré
type integral operator in the case of Lipschitz surfaces and derive the corresponding Dirichlet-to-
Neumann relations for the acoustic equation in an unbounded anisotropic region. In Section 4, the
transmission problems are equivalently reformulated as variational-functional equations containing
sesquilinear forms which live on a bounded domain occupied by the obstacle and the interface surface.
The boundedness and coercivity properties for the sesquilinear forms are proved in the appropriately
chosen function spaces which eventually lead to the unique solvability of the original acoustic trans-
mission problems. Finally, for the readers convenience, in Appendix we collect some auxiliary material
related to anisotropic radiating layer potentials over Lipschitz surfaces.

2. Formulation of the Problems and Uniqueness Theorems

2.1. Some auxiliary definitions and relations. Let Ω1 := Ω− be an unbounded domain in R3

with a simply connected compact boundary ∂Ω1 = S1 and Ω+ = R3 \Ω1. Further, let Ω2 := Ω+ \Ω3,
where Ω3 is a subdomain of Ω+ such that Ω3 ⊂ Ω+. Put S2 = ∂Ω3. Evidently, ∂Ω2 = S1 ∪ S2.
Throughout the paper, n = (n1, n2, n3) denotes the outward unit normal vector to Sq, q = 1, 2.
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In what follows, we assume that the interface S1 and the interior boundary S2 are arbitrary Lipschitz
surfaces, unless otherwise stated, and the following condition holds:

the interface S1 contains a C2-smooth open submanifold S∗1 . (2.1)

By Hs(Ω) = Hs
2(Ω), Hs

loc(Ω) = Hs
2, loc(Ω), Hs

comp(Ω) = Hs
2, comp(Ω) and Hs(S) = Hs

2(S),
s ∈ R, we denote the L2-based Bessel potential spaces of complex-valued functions on an open
domain Ω ⊂ R3 and on a closed manifold S without boundary, while D(Ω) stands for the space of
infinitely differentiable test functions with support in Ω. Recall that H0(Ω) = L2(Ω) is a space of
square integrable functions on Ω.

Further, let us define the following classes of functions:

H1, 0(Ω2;A2) := { v ∈ H1(Ω2) : A2v ∈ H0(Ω2) } ,

H1, 0
loc (Ω1;A1) := { v ∈ H1

loc(Ω1) : A1v ∈ H0
loc(Ω1) } ,

H̃s(Ω2) := {v : v ∈ Hs(R3), supp v ⊂ Ω2} ,

H̃s(M) := {g : g ∈ Hs(S2), supp g ⊂M} ,
Hs(M) := {rMg : g ∈ Hs(S2)} ,

where M ⊂ S2 is an open submanifold of the Lipschitz surface S2 with a Lipschitz boundary curve
∂M and rM stands for the restriction operator onto M.

We assume that the propagation region of a time harmonic acoustic wave utot is the domain
R3 \ Ω3 = Ω1 ∪ Ω2, which consists of the homogeneous part Ω1 and the inhomogeneous part Ω2.

Acoustic wave propagation is governed by a uniformly elliptic second order scalar partial differential
equation

A(x, ∂x, ω)utot(x) ≡ ∂k
(
akj(x) ∂ju

tot(x)
)

+ ω2 κ(x)utot(x) = f(x), x ∈ Ω1 ∪ Ω2,

where ∂x ≡ ∂ = (∂1, ∂2, ∂3), ∂j = ∂xj = ∂/∂xj , akj(x) = ajk(x) and κ(x) are real-valued functions,

ω ∈ R is a frequency parameter, while f is a square integrable function in R3 with a compact support,
f ∈ L2,comp(R3). Here and in what follows, the Einstein summation by repeated indices from 1 to 3
is assumed.

Note that in the mathematical model of an inhomogeneous absorbing medium the function κ is
complex-valued, with nonzero real and imaginary parts, in general (see, e.g., [12, Ch. 8]). Here we
treat only the case when the refractive index κ is a real-valued function, but it should be mentioned
that the complex-valued case can also be considered by the approach developed in the present paper.

In our further analysis, it is assumed that the real-valued variable coefficients akj and κ are the
constants in the homogeneous unbounded region Ω1,

akj(x) = ajk(x) =

 a
(1)
kj for x ∈ Ω1,

a
(2)
kj (x) for x ∈ Ω2,

κ(x) =

{
κ1 > 0 for x ∈ Ω1,

κ2(x) > 0 for x ∈ Ω2,
(2.2)

where a
(1)
kj and κ1 are the constants, while a

(2)
kj and κ2 are the Lipschitz-continuous functions in Ω2,

a
(2)
kj , κ2 ∈ C0, 1(Ω2), j, k = 1, 2, 3. (2.3)

Moreover, the matrices aq =
[
a

(q)
kj

]3
k,j=1

are uniformly positive definite, i.e., there are positive con-

stants c1 and c2 such that

c1 |ξ|2 ≤ a(q)
kj (x) ξk ξj ≤ c2 |ξ|2 ∀ x ∈ Ωq, ∀ ξ ∈ R3, q = 1, 2. (2.4)

We do not assume that the coefficients akj and κ are continuous across the interface S1, in general,

i.e., the case a
(2)
kj (x) 6= a

(1)
kj and κ2(x) 6= κ1 for x ∈ S1 is covered by our analysis.

Further, we denote

r
Ω1
A(x, ∂x, ω)u(x) ≡ A1(∂x, ω)u(x) := a

(1)
kj ∂k∂ju(x) + ω2κ1 u(x) for x ∈ Ω1, (2.5)

rΩ2
A(x, ∂x, ω)u(x) ≡ A2(x, ∂x, ω)u(x) := ∂xk

(
a

(2)
kj (x) ∂ju(x)

)
+ ω2 κ2(x)u(x) for x ∈ Ω2.
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We will often drop the arguments and write A1 and A2 instead of A1(∂x, ω) and A2(x, ∂x, ω),
respectively, when this does not lead to misunderstanding.

For a function uq, sufficiently smooth in Ωq (say, u1 ∈ H2
loc(Ω1) or u2 ∈ H2(Ω2)), the classical

conormal derivative operators T±q are well defined as

T±q uq(x) := a
(q)
kj nk(x) γ±

Sm
(∂juq(x)), x ∈ Sm, q,m = 1, 2, (2.6)

where the symbols γ+
Sm

and γ−
Sm

denote one-sided boundary trace operators on Sm from the interior
and exterior domains, respectively.

Motivated by the first Green identity, the classical conormal derivative operators (2.6) can be

extended by continuity to the functions u1 ∈ H1, 0
loc (Ω1;A1) and u2 ∈ H1, 0(Ω2;A2) giving well defined

canonical conormal derivatives T−1 u1 ∈ H−
1
2 (S1), T+

2 u2 ∈ H−
1
2 (S1), and T−2 u2 ∈ H−

1
2 (S2), defined

for arbitrary g1 ∈ H
1
2 (S1) and g2 ∈ H

1
2 (S2) by the following relations:〈

T−1 u1 , g1

〉
S1

:= −
∫
Ω1

A1u1(x)w1(x) dx−
∫
Ω1

[E1(u1, w1)− ω2κ1u1(x)w1(x)] dx, (2.7)

〈
T+

2 u2 , g1

〉
S1
−
〈
T−2 u2 , g2

〉
S2

:=

∫
Ω2

A2u2(x) w2(x) dx

+

∫
Ω2

[
E2(u2, w2)− ω2κ2(x)u2(x)w2(x)

]
dx, (2.8)

where the angular brackets 〈· , ·〉Sm are understood as duality pairing of H−
1
2 (Sm) with H

1
2 (Sm) which

extends the usual bilinear L2(Sm) inner product, w1 ∈ H1
comp(Ω1) with γ−

S1
w1 = g1, w2 ∈ H1(Ω2)

with γ+
S1
w2 = g1 and γ−

S2
w2 = g2, and

E1(u1, w1) := a
(1)
kj ∂ju1(x) ∂kw1(x), E2(u2, w2) := a

(2)
kj (x) ∂ju2(x) ∂kw2(x). (2.9)

Evidently, there is a constant C > 0 such that

‖T−1 u1‖
H
− 1

2 (S1)

6 C
(
‖A1u1‖H0(Ω∗1)

+ ‖u1‖H1(Ω∗1)

)
,

‖T+
2 u2‖

H
− 1

2 (S1)

6 C
(
‖A2u2‖H0(Ω2)

+ ‖u2‖H1(Ω2)

)
,

‖T−2 u2‖
H
− 1

2 (S2)

6 C
(
‖A2u2‖H0(Ω2)

+ ‖u2‖H1(Ω2)

)
,

(2.10)

where Ω∗1 is an arbitrary one-sided exterior neighbourhood of the surface S1 = ∂Ω1 located in Ω1.
For the properties of the trace operator in the case of Lipschitz domains and for the corresponding
conormal derivatives see [13,15], [29, Ch. 4], [30].

Recall that for arbitrary functions u1 ∈ H1, 0
loc (Ω1;A1) and u2 ∈ H1, 0(Ω2;A2), the Green first

identities associated with the operators A1 and A2 (see, e.g., [13, Section 3], [29, Ch. 4], [30, Theorem
3.9]) ∫

Ω1(R)

A1u1(x) v1(x) dx+

∫
Ω1(R)

[E1(u1, v1)− ω2κ1u1(x) v1(x)] dx

=
〈
T+

1 u1 , γ+
Σ(R)

v1

〉
Σ(R)

−
〈
T−1 u1 , γ

−
S1
v1

〉
S1

∀ v1 ∈ H1
loc(Ω1), (2.11)∫

Ω2

A2u2(x) v2(x) dx+

∫
Ω2

[
E2(u2, v2)− ω2κ2(x)u2(x) v2(x)

]
dx

=
〈
T+

2 u2 , γ+
S1
v2

〉
S1
−
〈
T−2 u2 , γ−S2

v2

〉
S2

∀ v2 ∈ H1(Ω2) (2.12)

hold, where Ω1(R) := Ω1 ∩ B(R) with B(R) being a ball centered at the origin and radius R such
that Ω2 ⊂ B(R), Σ(R) := ∂B(R), Eq(uq, vq), q = 1, 2, are defined in (2.9).

By Z(Ω1) we denote the sub-class of complex-valued functions from H1
loc(Ω1) satisfying the Som-

merfeld radiation conditions at infinity (see [12,37,42] for the Helmholtz operator and [19,20,34,41] for
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the “anisotropic” operator A1 defined by (2.5)). Denote by Sω the characteristic ellipsoid associated
with the operator A1(∂x, ω),

a
(1)
kj ξk ξj − ω

2κ1 = 0, ξ ∈ R3, ω 6= 0.

For an arbitrary vector η ∈ R3 with |η| = 1 there exists only one point ξ(η) ∈ Sω such that the outward
unit normal vector n(ξ(η)) to Sω at the point ξ(η) has the same direction as η, i.e., n(ξ(η)) = η. Note
that ξ(−η) = −ξ(η) ∈ Sω and n(−ξ(η)) = −η.

It can easily be verified that

ξ(η) = ω
√
κ1 (a−1

1 η · η)−
1
2 a−1

1 η, (2.13)

where a−1
1 is the matrix, inverse to a1 :=

[
a

(1)
kj

]3
k,j=1

, and the central dot denotes the scalar product

in R3.

Definition 2.1. A complex-valued function v belongs to the class Z(Ω1) if there exists a ball B(R) of
radius R centered at the origin such that v ∈ C1(Ω1 \B(R)), and v satisfies the Sommerfeld radiation
conditions associated with the operator A1(∂x, ω) for sufficiently large |x|,

v(x) = O(|x|−1), ∂kv(x)− iξk(η)v(x) = O(|x|−2), k = 1, 2, 3, (2.14)

where ξ(η) ∈ Sω corresponds to the vector η = x/|x| (i.e., ξ(η) is given by (2.13) with η = x/|x|).

Notice that due to the ellipticity of the operator A1(∂x, ω), any solution to the constant coefficient
homogeneous equation A1(∂x, ω)v(x) = 0 in an open region Ω ⊂ R3 is a real analytic function of x in
Ω.

Conditions (2.14) are equivalent to the classical Sommerfeld radiation conditions for the Helmholtz

equation if A1(∂x, ω) = ∆(∂) + ω2, i.e., if κ1 = 1 and a
(1)
kj = δkj , where δkj is the Kronecker delta.

The following analogue of the classical Rellich-Vekua lemma holds (for details see [19,34]).

Lemma 2.2. Let v ∈ Z(Ω1) be a solution of the equation A1(∂x, ω)v = 0 in Ω1 and let

lim
R→+∞

Im

{ ∫
Σ(R)

v(x) T1(x, ∂x)v(x) dΣ(R)

}
= 0, (2.15)

where Σ(R) is the sphere of radius R centered at the origin. Then v = 0 in Ω1.

Remark 2.3. For x ∈ Σ(R) and η = x/|x|, we have n(x) = η and, in view of (2.6) and (2.14), for a
function v ∈ Z(Ω1), we get

T1(x, ∂x)v(x) = a
(1)
kj nk(x) [ i ξj(η) v(x)] +O(|x|−2) = i a

(1)
kj ηk ξj(η) v(x) +O(|x|−2) .

Therefore, by (2.13) and the symmetry condition a
(1)
kj = a

(1)
jk , we arrive at the relation

v(x)T1(x, ∂x)v(x) = i ω
√
κ1 |v(x)|2 (a−1

1 η · η)−
1
2 a1η · a−1η +O(|x|−3)

= i ω
√
κ1 (a−1

1 η · η)−
1
2 |v(x)|2 +O(|x|−3).

On the other hand, the matrix a1 is positive definite (cf. (2.4)), which implies positive definiteness of
the inverse matrix a−1

1 . Hence there are positive constants δ0 and δ1 such that for all η ∈ Σ(1),

0 < δ0 6 (a−1
1 η · η)−

1
2 6 δ1 <∞ .

Consequently, for ω 6= 0, condition (2.15) is equivalent to the following relation:

lim
R→+∞

∫
Σ(R)

|v(x)|2 dΣ(R) = 0,

which is the well known Rellich-Vekua condition in the theory of Helmholtz equation (for details
see [12,37,42]).
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2.2. Formulation of the transmission problems. In the unbounded region Ω1, we have a total
wave field utot = uinc + usc, where uinc is a wave motion initiating the known incident field and usc

is a radiating unknown scattered field. It is often assumed that the incident field is defined in the
whole of R3, being, for example, a corresponding plane wave which solves the homogeneous equation
A1u

inc = 0 in R3 but does not satisfy the Sommerfeld radiation conditions at infinity. Motivated by
relations (2.2), we set u1(x) := usc(x) for x ∈ Ω1 and u2(x) := utot(x) for x ∈ Ω2.

Now we formulate the transmission problem associated with the time-harmonic acoustic wave scat-
tering by a bounded anisotropic inhomogeneity embedded in an unbounded anisotropic homogeneous
medium:

Find complex-valued functions u1 ∈ H1, 0
loc (Ω1;A1) ∩ Z(Ω1) and u2 ∈ H1, 0(Ω2;A2) satisfying the

differential equations

A1(∂x, ω)u1(x) = f1(x) for x ∈ Ω1, (2.16)

A2(x, ∂x, ω)u2(x) = f2(x) for x ∈ Ω2, (2.17)

the transmission conditions on the interface S1,

γ+
S1
u2 − γ−S1

u1 = ϕ
1

on S1, (2.18)

T+
2 u2 − T−1 u1 = ψ

1
on S1, (2.19)

and one of the following boundary conditions on S2:
The Dirichlet condition

γ−
S2
u2 = 0 on S2, (2.20)

The Neumann condition

T−2 u2 = ψ
2

on S2, (2.21)

The mixed type conditions

γ−
S2D

u2 = 0 on S2D, T−2 u2 = ψ
2N

on S2N , (2.22)

where S2D ∩ S2N = ∅, S2D ∪ S2N = S2, and

f2 := rΩ2
f ∈ H0(Ω2), f1 := rΩ1

f ∈ H0
comp(Ω1), f ∈ H0

comp(R3),

ϕ
1
∈ H 1

2 (S1), ψ
1
∈ H− 1

2 (S1), ψ
2
∈ H− 1

2 (S2), ψ
2N
∈ H− 1

2 (S2N ).
(2.23)

In the above setting, equations (2.16) and (2.17) are understood in the distributional sense, the
Dirichlet type conditions in (2.18), (2.20) and (2.22) are understood in the usual trace sense, while
the Neumann type conditions in (2.19), (2.21) and (2.22) are understood in the canonical conormal
derivative sense defined by relations (2.7)–(2.8).

If the total field utot and its conormal derivative are continuous across the interface, then ϕ
1

=
γ−
S1
uinc and ψ

1
= T−1 u

inc.

The above-formulated boundary-transmission problems with the Dirichlet, Neumann, and mixed
type conditions will be referred to as Problem (TD), (TN) and (TM), respectively.

2.3. Uniqueness theorems. Here we prove the uniqueness theorem.

Theorem 2.4. The boundary-transmission problems (TD), (TN) and (TM) possess at most one
solution.

Proof. Due to the linearity of the problems, we have to show that the corresponding homogeneous
problems possess only the trivial solution.

Let a pair (u2, u1) with u2 ∈ H1, 0(Ω2;A2) and u1 ∈ H1, 0
loc (Ω1;A1) ∩ Z(Ω1) be a solution to the

homogeneous boundary-transmission problem (TD) or (TN) or (TM). Note that u1 ∈ C∞(Ω1) due to
ellipticity of the constant coefficient operator A1.
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Let R be an arbitrary positive number such that Ω2 ⊂ B(R). We can write Green’s first identities
(2.11) and (2.12) for the functions u1 and u2 in the domains Ω1(R) := Ω1 ∩B(R) and Ω2. In view of
the homogeneity of the boundary conditions on S2, we arrive at the relations∫

Ω1(R)

[a
(1)
kj ∂ju1(x) ∂ku1(x)− ω2κ1|u1(x)|2] dx = −〈T−1 u1 , γ−S1

u1〉S1
+ 〈T+

1 u1 , γ
+
Σ(R)u1〉Σ(R), (2.24)

∫
Ω2

[a
(2)
kj (x) ∂ju2(x) ∂ku2(x)− ω2κ2(x)|u2(x)|2] dx = 〈T+

2 u2 , γ
+
S1
u2〉S1 . (2.25)

Due to the homogeneous transmission conditions and since the matrices aq = [a
(q)
kj ]3k,j=1 are symmetric

and positive definite, after adding (2.24) and (2.25) and separating the imaginary part, we get

Im

{ ∫
Σ(R)

u1(x)T1(x, ∂x)u1(x) dΣ(R)

}
= 0,

whence by Lemma 2.2, we deduce that u1 = 0 in Ω1.
Therefore, in view of (2.16)–(2.22), the function u2 ∈ H1, 0(Ω2;A2) satisfies the homogeneous

differential equation

A2(x, ∂x, ω)u2(x) = 0 in Ω2,

the homogeneous Cauchy type conditions

γ+
S1
u2 = 0 and T+

2 u2 = 0 on S1,

and one of the homogeneous boundary conditions (2.20)–(2.22) on S2.
Keeping in mind the relations (2.1) and (2.3), by the interior and boundary regularity properties

of solutions to a strongly elliptic partial differential equation, we deduce u2 ∈ C2(Ω2 ∪ S∗1 ) (see,
e.g., [18, Lemmas 6.16, 6.18], [29, Theorem 4.18]). Thus, the Cauchy data of the function u2 vanish
continuously on S∗1 ⊂ S1 and due to [39, Theorem 2.9], we conclude that u2 = 0 in Ω2, which completes
the proof. �

3. Integral Relations for Radiating Function in the Domain Ω1

For any radiating solution u1 ∈ H1, 0
loc (Ω1;A1) ∩ Z(Ω1) with A1u1 ∈ H0

comp(Ω1) the Green third
identity (for details see [13,19,29,34])

u1 + V (T−1 u1)−W (γ−
S1
u1) = P(A1u1) in Ω1 (3.1)

holds, where V , W , and P denote, respectively, the single layer potential, double layer potential and
volume potential associated with the operator A1(∂x, ω),

V g(y) := −
∫
S1

Γ(x− y, ω) g(x) dSx, y ∈ R3 \ S1, (3.2)

Wg(y) := −
∫
S1

[T1(x, ∂x)Γ(x− y, ω)] g(x) dSx, y ∈ R3 \ S1, (3.3)

Ph(y) :=

∫
Ω1

Γ(x− y, ω)h(x) dx, y ∈ R3. (3.4)

Here g and h are densities of the potentials, T1(x, ∂x) = a
(1)
kj nk(x)∂xj , n(x) is the outward unit normal

vector to S1 at the point x ∈ S1, and

Γ(x, ω) = −
exp{iω√κ1 (a−1

1 x · x)1/2}
4π(det a1)1/2 (a−1

1 x · x)1/2
(3.5)

is a radiating fundamental solution of the operator A1(∂x, ω) (see, e.g., Lemma 1.1 in [20]).



310 S. GORGISHELI, M. MREVLISHVILI, AND D. NATROSHVILI

Remark 3.1. In a neighbourhood of the origin, e.g., for |x| < 1, we have the decomposition

Γ(x, ω) = − 1

4π (det a1)1/2

{ 1

(a−1
1 x · x)1/2

+ iω
√
κ1 −

1

2
ω2κ1 (a−1

1 x · x)1/2 + · · ·
}
, (3.6)

while for sufficiently large |y|, we have the following asymptotic formula:

Γ(y − x, ω) = c(ξ)
exp{iξ · (y − x)}

|y|
+O(|y|−2), c(ξ) = − |a1 ξ|

4πω
√
κ1 (det a1)1/2

, (3.7)

where x varies in a bounded subset of R3, ξ = ξ(η) ∈ Sω corresponds to the direction η = y/|y|
and is given by (2.13). The asymptotic formula (3.7) can be differentiated arbitrarily many times
with respect to x and y. Both formulas, (3.5) and (3.6), hold true for an arbitrary complex parameter
ω = ω1 +iω2 with ωj ∈ R, j = 1, 2. Evidently, the function Γ(x) := Γ(x, 0) is a fundamental solution of
the operator A1(∂x) := A1(∂x, 0), while Γ(x, i) is the exponentially decaying real-valued fundamental
solution of the operator A1(∂x, i). In view of (3.6), we have

Γ(x, ω)− Γ(x, i) = − 1

4π (det a1)1/2

{
(1 + iω)

√
κ1 −

1

2
(ω2 + 1)κ1 (a−1

1 x · x)1/2 + · · ·
}
, (3.8)

implying for |x| < 1 the following relations:

∂

∂xk

[
Γ(x, ω)− Γ(x, i)

]
= O(1),

∂2

∂xj∂xk

[
Γ(x, ω)− Γ(x, i)

]
= O(|x|−1), k, j = 1, 2, 3. (3.9)

The mapping properties of these potentials and the boundary operators generated by them in
the case of Lipschitz surface S1 are collected in Appendix A. Note that the mapping properties
of layer potentials associated with Lipschitz and smooth surfaces are essentially different (cf., e.g.,
[3–5,13,29,43] and references cited therein).

Evidently, the layer potentials V g and Wg solve the homogeneous differential equation (2.16), i.e.,

A1V g = A1Wg = 0 in R3 \ S1, (3.10)

while for f1 ∈ H0
comp(Ω1), the volume potential Pf1 ∈ H2

loc(R3) solves the following nonhomogeneous
equation (see Lemma A.1)

A1Pf1 =

f1 in Ω1,

0 in R3 \ Ω1.
(3.11)

Using the properties of layer and volume potentials (see Lemma A.1(iii)), for the exterior traces of
Green’s third identity (3.1) and its conormal derivative on S1, we get

V(T−1 u1) + (2−1I −W)(γ−
S1
u1) = γ−

S1
P(A1u1) on S1, (3.12)

(2−1I +W ′)(T−1 u1)− L(γ−
S1
u1) = T−1 P(A1u1) on S1, (3.13)

where the integral operators V, W, W ′ and L are defined in Appendix A by formulas (A.2)–(A.5).
Recall that the operators V, 2−1I−W, 2−1I+W ′ and L involved in (3.12)–(3.13) are not invertible for
resonant values of the frequency parameter ω. The set of these resonant values is countable and consists
of eigenfrequencies of the interior Dirichlet and Neumann boundary value problems for the operator
A1 in the bounded domain surrounded by the surface S1 (see [42, Section 4], [11, Ch. 3], [9, Section
7.7], [7]). Therefore, to obtain Dirichlet-to-Neumann or Neumann-to-Dirichlet mappings for arbitrary
values of the frequency parameter ω, we apply the combined-field integral equations approach and
proceed as follows. Multiply equation (3.12) by i α with some fixed positive α and add to equation
(3.13) to obtain (cf., [6, 8, 27,36])

K(T−1 u1)−M(γ−
S1
u1) = Φ(A1u1) on S1, (3.14)
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where

Kg :=
(1

2
I +W ′ + i αV

)
g =

(
T+

1 + i α γ+
S1

)
V g on S1, (3.15)

Mh :=
[
L+ i α

(
− 1

2
I +W

)]
h =

(
T+

1 + i α γ+
S1

)
W h on S1, (3.16)

Φ f1 :=
(
T−1 + i α γ−

S1

)
P f1 =

(
T+

1 + i α γ+
S1

)
P f1 on S1, (3.17)

for f1 ∈ H0
comp(Ω1), g ∈ H− 1

2 (S1) and h ∈ H 1
2 (S1). The relation (3.17) follows from the imbedding

P f1 ∈ H2
loc(R3) for f1 ∈ H0

comp(R3).

In view of Lemma A.2, from (3.14), for arbitrary u1 ∈ H1, 0
loc (Ω1;A1)∩Z(Ω1), we derive the following

analogue of the Steklov-Poincaré type relation:

T−1 u1 = K−1
[
M (γ−

S1
u1) + Φ(A1u1)

]
on S1, (3.18)

where K−1 : H−
1
2 (S1)→ H−

1
2 (S1) is the inverse to the operator K : H−

1
2 (S1)→ H−

1
2 (S1).

4. Weak Formulation of the Mixed Boundary-transmission Problems and the
Existence Results

Here we apply the so-called non-local approach to obtain the variational-functional formulation
of the transmission problem under consideration. To this end, let us assume that a pair (u2, u1) ∈
H1, 0(Ω2;A2)×

(
H1,0

loc (Ω1;A1)∩Z(Ω1)
)

solves the mixed transmission problem (TM) (see (2.16)–(2.19))
and (2.22). Applying relation (3.18), transmission conditions (2.18)–(2.19) and mixed boundary con-
ditions (2.22) in the Green first identity (2.12), for the domain Ω2, we arrive at the equation

B(u2, v) = F(v)

∀ v ∈ H1(Ω2;S2D) := {w ∈ H1(Ω2) : r
S2D

γ−
S2D

w = 0},
(4.1)

where B is a sesquilinear form and F is an antilinear functional defined, respectively, as

B(u2, v) := B(1)(u2, v) + B(2)(u2, v), (4.2)

B(1)(u2, v) :=

∫
Ω2

[
a

(2)
kj (x) ∂ju2(x) ∂kv(x)− ω2κ2(x)u2(x) v(x)

]
dx, (4.3)

B(2)(u2, v) := −
〈
K−1M(γ+

S1
u2) , γ+

S1
v
〉
S1
, (4.4)

F(v) := −
∫
Ω2

f2(x) v(x) dx+ 〈K−1Φf1 , γ+
S1
v〉S1

+
〈
ψ1, γ+

S1
v
〉
S1
−
〈
K−1Mϕ1 , γ+

S1
v
〉
S1

−
〈
ψ

2N
, γ−

S2N
v
〉
S2N

, (4.5)

with the operators K, M, and Φ defined by relations (3.15)–(3.17). We associate with equation (4.1)
the following variational-functional problem (in a wider space).

Problem (VMT1). Find a function u2 ∈ H1(Ω2;S2D) satisfying variational-functional equation (4.1)
for all v ∈ H1(Ω2;S2D).

Now, let us first prove the following equivalence

Theorem 4.1. Let conditions (2.23) be fulfilled.

(i) If a pair (u2, u1) ∈ H1, 0(Ω2;A2)×
(
H1, 0

loc (Ω1;A1)∩Z(Ω1)
)

solves the mixed transmission problem
(TM), then the function u2 solves variational-functional equation (4.1) and the following relation holds:

u1(y) = Pf1(y)− V (T+
2 u2 − ψ1)(y) +W (γ+

S1
u2 − ϕ1)(y), y ∈ Ω1. (4.6)

(ii) Vice versa, if a function u2 ∈ H1(Ω2;S2D) solves variational-functional equation (4.1), then

the pair (u2, u1) with u1 defined by (4.6) belongs to the class H1, 0(Ω2;A2)×
(
H1, 0

loc (Ω1;A1) ∩ Z(Ω1)
)

and solves the mixed transmission problem (TM).
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Proof. (i) The first part of the theorem follows from the derivation of variational-functional equation
(4.1).

(ii) To prove the second part, we proceed as follows. If u2 solves variational-functional equation
(4.1), then for v ∈ D(Ω2) the equation∫

Ω2

[
a

(2)
kj (x) ∂ju2(x) ∂kv(x)− ω2κ2(x)u2(x) v(x)

]
dx = −

∫
Ω2

f2(x) v(x) dx,

particularly holds and implies that u2 is a solution of equation (2.17), A2(x, ∂x, ω)u2 = f2 in Ω2 in
the sense of distributions and, evidently, u2 ∈ H1, 0(Ω2;A2) in view of (2.23). Therefore the canonical

conormal derivatives T+
2 u2 ∈ H−

1
2 (S1) and T−2 u2 ∈ H−

1
2 (S2) are well-defined in the sense of (2.8).

Further, it is easy to see that function (4.6) is well-defined, solves the differential equation (2.16) in

Ω1 due to (3.10)–(3.11), and belongs to the space H1, 0
loc (Ω1;A1)∩Z(Ω1) in view of (2.23) and properties

of the volume and layer potentials. Therefore, the canonical conormal derivative T−1 u1 ∈ H−
1
2 (S1) is

also well-defined in the sense of (2.7).
Now we show that mixed boundary conditions (2.22) on S2 and transmission conditions (2.18)–

(2.19) on S1 are satisfied. To this end, we write Green’s identity (2.12) for u2 and arbitrary v ∈
H1(Ω2;S2D), ∫

Ω2

[
E2(u2, v)− ω2κ2(x)u2(x) v(x)

]
dx = −

∫
Ω2

f2(x) v(x) dx

+
〈
T+

2 u2 , γ+
S1
v
〉
S1
−
〈
T−2 u2 , γ−S2

v
〉
S2N

. (4.7)

Comparing (4.7) and (4.1) leads to the relation〈
K−1M(γ+

S1
u2) , γ+

S1
v
〉
S1

+ 〈K−1Φf1 , γ+
S1
v〉S1

+
〈
ψ1, γ+

S1
v
〉
S1
−
〈
K−1Mϕ1 , γ+

S1
v
〉
S1

−
〈
ψ

2N
, γ−

S2N
v
〉
S2N

= 〈T+
2 u2 , γ+

S1
v〉S1 − 〈T−2 u2 , γ−S2

v〉S2N
(4.8)

for all v ∈ H1(Ω2;S2D).
If we take an arbitrary function v ∈ H1(Ω2;S2D) such that γ+

S1
v = 0, from (4.8), we get〈

ψ
2N
, γ−

S2N
v
〉
S2N

= 〈T−2 u2 , γ−S2
v〉S2N

(4.9)

implying the boundary condition T−2 u2 = ψ
2N

on S2N . Consequently, due to the inclusion u2 ∈
H1(Ω2;S2D), it is evident that the mixed boundary conditions (2.22) on S2 are satisfied.

In view of (4.9), from (4.8), we deduce

K−1M(γ+
S1
u2) +K−1Φf1 + ψ1 −K−1Mϕ1 = T+

2 u2 on S1.

Applying the operator K to this equation and taking into account (3.17), we arrive at the relation

M(γ+
S1
u2 − ϕ1)−K(T+

2 u2 − ψ1) = −
(
T+

1 + i α γ+
S1

)
P f1 on S1.

By (3.15), (3.16) and (3.17), the later equation can be rewritten as(
T+

1 + i α γ+
S1

)[
W (γ+

S1
u2 − ϕ1)− V (T+

2 u2 − ψ1) + P f1

]
= 0 on S1. (4.10)

Let us introduce the function

w := W (γ+
S1
u2 − ϕ1)− V (T+

2 u2 − ψ1) + P f1 in R3 \ S1.

Evidently, in view of the mapping properties of the layer and volume potentials (see Lemma A.1),

on the one hand, r
Ω1
w = u1 ∈ H1, 0

loc (Ω1;A1) ∩ Z(Ω1) due to (4.6), and on the other hand, r
Ω+w ∈

H1, 0(Ω+;A1), where Ω+ = R3 \ Ω1.
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Further, by (3.10), (3.11) and (4.10), we deduce that w solves the homogeneous interior Robin’s
problem

A1(∂, ω)w = 0 in Ω+ = R3 \ Ω1,(
T+

1 + i α γ+
S1

)
w = 0 on S1 = ∂Ω+,

where α is a positive number. Therefore, by the uniqueness theorem, for the interior Robin’s problem
we infer w = 0 in Ω+. Thus,

w = W (γ+
S1
u2 − ϕ1)− V (T+

2 u2 − ψ1) + P f1 =

u1 in Ω1,

0 in Ω+.
(4.11)

Using the inclusion P f1 ∈ H2
loc(R3), relation (3.17) and the jump relations, for the layer potentials

across the surface S1 (see Lemma A.1), we find from (4.11) that

γ−
S1
w − γ+

S1
w = γ+

S1
u2 − ϕ1 = γ−

S1
u1 on S1,

T−1 w − T
+
1 w = T+

2 u2 − ψ1 = T−1 u1 on S1,

which show that the transmission conditions (2.18)–(2.19) hold. This completes the proof. �

Theorem 4.2. The homogeneous variational-functional Problem (VMT1) possesses only the trivial
solution in the space H1(Ω2;S2D).

Proof. Let u2 ∈ H1(Ω2;S2D) be a solution of the homogeneous variational-functional Problem (VMT1),

B(u2, v) ≡
∫
Ω2

[
a

(2)
kj (x) ∂ju2(x) ∂kv(x)− ω2κ2(x)u2(x) v(x)

]
dx

−
〈
K−1M(γ+

S1
u2) , γ+

S1
v
〉
S1

= 0 ∀ v ∈ H1(Ω2;S2D). (4.12)

By the word for word arguments applied in the proof of Theorem 4.1, we can show that u2 is a solution
of the homogeneous equation A2(x, ∂x, ω)u2 = 0 in Ω2 in the distributional sense and, evidently, u2 ∈
H1, 0(Ω2;A2). Therefore the canonical conormal derivatives T+

2 u2 ∈ H−
1
2 (S1) and T−2 u2 ∈ H−

1
2 (S2)

are well-defined in the sense of (2.8) and for u2 and arbitrary v ∈ H1(Ω2;S2D), Green’s identity∫
Ω2

[
E2(u2, v)− ω2κ2(x)u2(x) v(x)

]
dx =

〈
T+

2 u2 , γ+
S1
v
〉
S1
−
〈
T−2 u2 , γ−S2

v
〉
S2N

(4.13)

holds. Comparing (4.12) and (4.13) leads to the relation〈
K−1M(γ+

S1
u2) , γ+

S1
v
〉
S1

= 〈T+
2 u2 , γ+

S1
v〉S1

− 〈T−2 u2 , γ−S2
v〉S2N

(4.14)

for all v ∈ H1(Ω2;S2D). If we take an arbitrary function v ∈ H1(Ω2;S2D) such that γ+
S1
v = 0, from

(4.14), we find

T−2 u2 = 0 on S2N .

Therefore from (4.14), we deduce

M(γ+
S1
u2)−K(T+

2 u2) = 0 on S1,

which can be rewritten as(
T+

1 + i α γ+
S1

)[
W (γ+

S1
u2)− V (T+

2 u2)
]

= 0 on S1. (4.15)

Let

u1 := W (γ+
S1
u2)− V (T+

2 u2) in R3 \ S1. (4.16)
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Note that in view of Lemma A.1, r
Ω1
u1 ∈ H1, 0

loc (Ω1;A1) ∩ Z(Ω1) and r
Ω+u1 ∈ H1, 0(Ω+;A1) with

Ω+ = R3 \Ω1. Moreover, by (3.10), (4.15) and (4.16), we see that u1 solves the homogeneous interior
Robin’s problem

A1(∂, ω)u1 = 0 in Ω+ = R3 \ Ω1,(
T+

1 + i α γ+
S1

)
u1 = 0 on S1 = ∂Ω+,

where α is a positive number. Consequently, u1 = 0 in Ω+ and due to the jump relations, for the
layer potentials, from (4.16), we deduce

γ−
S1
u1 = γ−

S1
u1 − γ+

S1
u1 = γ+

S1
u2 on S1,

T−1 u1 = T−1 u1 − T+
1 u1 = T+

2 u2 on S1.

Combining the above obtained results, we finally see that the pair (u2, u1) ∈ H1, 0(Ω2;A2)×
(
H1, 0

loc (Ω1;

A1) ∩ Z(Ω1)
)

solves the mixed homogeneous transmission problem and by the uniqueness Theorem
2.4, we have u2 = 0 in Ω+, which completes the proof. �

Now let us consider the following variational-functional problem.

Problem (VMT2). Find a pair (u2, u1) ∈ H1(Ω2;S2D) ×
(
H1

loc(Ω1) ∩ Z(Ω1)
)

satisfying the system
of equations

B(u2, v) = F(v) for all v ∈ H1(Ω2;S2D), (4.17)

u1(y) + V (T+
2 u2)(y)−W (γ+

S1
u2)(y) = Pf1(y) + V ψ1(y)−Wϕ1(y), y ∈ Ω1, (4.18)

where B and F are defined in (4.2)–(4.5) and conditions (2.23) are satisfied.

Corollary 4.3. System (4.17)–(4.18) is equivalent to the mixed transmission problem (TM) in the
following sense: if a pair (u2, u1) ∈ H1(Ω2;S2D) ×

(
H1

loc(Ω1) ∩ Z(Ω1)
)

solves system (4.17)–(4.18),
then it is unique and solves the mixed transmission problem (TM), and vice versa.

Proof. In view of Theorems 2.4, 4.1 and 4.2, it suffices to show that the right-hand sides of system
(4.17)–(4.18) vanish if and only if

f1 = 0, f2 = 0, ϕ
1

= 0, ψ
1

= 0, ψ
2N

= 0. (4.19)

Let

F(v) = 0 ∀ v ∈ H1(Ω2;S2D), (4.20)

Pf1 + V ψ1 −Wϕ1 = 0 in Ω1. (4.21)

By the same arguments as in the proof of Theorem 4.1 (see the derivation of formula (4.11)), from
(4.20), we obtain

P f1 + V ψ1 −Wϕ1 = 0 in Ω2. (4.22)

From relations (4.21) and (4.22) the equalities f1 = 0, ϕ
1

= 0, and ψ
1

= 0 follow immediately in view
of Lemma A.1. In accordance with (4.5), then (4.20) takes the form

−
∫
Ω2

f2(x) v(x) dx−
〈
ψ

2N
, γ−

S2N
v
〉
S2N

= 0, ∀ v ∈ H1(Ω2;S2D),

implying f2 = 0 and ψ
2N

= 0, which completes the proof. �

Remark 4.4. Note that only equality (4.20) separately leads to (4.22) and does not imply relations
(4.19).

Now we prove the following boundedness and coercivity theorem.
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Theorem 4.5. For the sesquilinear form B defined by (4.2)–(4.4) and the antilinear functional F
defined in (4.5) under conditions (2.23), there are real constants C∗j > 0, j = 1, 2, 3, 4 such that

|B(u2, v)| ≤ C∗1 ‖u2‖H1(Ω2)
‖v‖

H1(Ω2)
∀u2, v ∈ H1(Ω2;S2D), (4.23)

|F(v)| ≤ C∗2 ‖v‖H1(Ω2)
∀ v ∈ H1(Ω2;S2D),

ReB(u2, u2) ≥ C∗3 ‖u2‖2
H1(Ω2)

− C∗4 ‖u2‖2
H0(Ω2)

∀u2 ∈ H1(Ω2;S2D). (4.24)

Proof. The boundedness of the sesquilinear form B(1)(u2, v) follows directly from the Cauchy-Schwartz
inequality,

∣∣B(1)(u2, v)
∣∣ 6 C5 ‖u2‖H1(Ω2) ‖v‖H1(Ω2), while the boundedness of the sesquilinear form

B(2)(u2, v) can be shown by the duality inequality, Lemma A.2, and trace theorem,∣∣B(2)(u2, v)
∣∣ =

∣∣〈K−1M(γ+
S1
u2) , γ+

S1
v
〉
S1

∣∣
6 C1 ‖K−1M(γ+

S1
u2)‖

H−
1
2 (S1)

‖γ+
S1
v‖
H

1
2 (S1)

6 C2 ‖M(γ+
S1
u2)‖

H−
1
2 (S1)

‖v‖H1(Ω2) 6 C3 ‖γ+
S1
u2‖

H
1
2 (S1)

‖v‖H1(Ω2)

6 C4 ‖u2‖H1(Ω2) ‖v‖H1(Ω2),

where Cj , j = 1, . . . , 4, are some positive constants. Consequently, (4.23) holds.
Keeping in mind conditions (2.23), relations (2.10), (3.11), (3.17), (4.5) and the estimate∣∣〈K−1Φf1 , γ+

S1
v〉S1

∣∣ 6 C5 ‖
(
T+

1 + i α γ+
S1

)
Pf1‖

H
− 1

2 (S1)

‖γ+
S1
v‖

H
1
2 (S1)

6 C6

(
‖A1Pf1‖H0(Ω2) + ‖Pf1‖H1(Ω2)

)
‖v‖

H1(Ω2)

6 C7 ‖f1‖H0(Ω1)
‖v‖

H1(Ω2)
,

the boundedness of the functional F can be proved by the arguments similar to the above ones,

|F(v)| ≤C8

(
‖f1‖L2(Ω1)

+ ‖f2‖L2(Ω2)
+ ‖ϕ1‖

H
1
2 (S1)

+ ‖ψ1‖
H
− 1

2 (S1)

+ ‖ψ
S2N
‖
H
− 1

2 (S2N )

)
‖v‖

H1(Ω2)
for all v ∈ H1(Ω2;S2D).

Now we prove inequality (4.24). In view of the positive definiteness of the matrix a2 =
[
a

(2)
kj

]3
k,j=1

,

we have

ReB(1)(u2, u2) > C9 ‖u2‖2
H1(Ω2)

− C10 ‖u2‖2
H0(Ω2)

,

where C9 > 0 and C10 = ω2 max
Ω2

κ2(x).

Further, by Lemma A.6, we deduce

ReB(2)(u2, u2) = −Re
〈
K−1M(γ+

S1
u2) , γ+

S1
u2

〉
S1

> C ′1 ‖γ+
S1
u2‖2

H
1
2 (S1)

− C ′2 ‖γ+
S1
u2‖2

H0(S1)

> C ′1 ‖γ+
S1
u2‖2

H
1
2 (S1)

− C ′2 ‖γ+
S1
u2‖2

Hδ(S1)

> C ′1 ‖γ+
S1
u2‖2

H
1
2 (S1)

− C ′2 ‖u2‖2
H

1
2

+δ
(Ω2)

> −C ′2 ‖u2‖2
H

1
2

+δ
(Ω2)

, (4.25)

where C ′1 > 0, C ′2 > 0, and δ is an arbitrarily small positive number. By Ehrling’s lemma (see,
e.g., [38, Theorem 7.30]), for an arbitrarily small positive number ε there is a positive constant C(ε)
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such that

‖w‖2
H

1
2

+δ
(Ω2)

6 ε‖w‖2
H1(Ω2)

+ C(ε)‖w‖2
H0(Ω2)

for all w ∈ H1(Ω2), 0 < δ <
1

2
.

Therefore from (4.25), we have

ReB(2)(u2, u2) > −C ′2
(
ε ‖u2‖2

H1(Ω2)
+ C(ε)‖u2‖2

H0(Ω2)

)
,

with ε such that C9 − εC ′2 > 0, which completes the proof. �

Now we can prove the following existence results.

Theorem 4.6. Let conditions (2.23) be fulfilled.

(i) Variational-functional equation (4.1) is uniquely solvable in the space H1(Ω2;S2D) for arbitrary
antilinear bounded functional F defined on H1(Ω2;S2D).

(ii) System (4.17)–(4.18) with F defined in (4.5), is uniquely solvable with respect to the unknown pair
(u2, u1) ∈ H1(Ω2;S2D)×

(
H1

loc(Ω1) ∩ Z(Ω1)
)
.

(iii) The mixed transmission problem (TM) is uniquely solvable in the space H1(Ω2;S2D)×
(
H1

loc(Ω1)∩
Z(Ω1)

)
.

Proof. Item (i) follows directly from Theorem 4.2, Theorem 4.5 and the Lax–Milgram lemma (see,
e.g., [29, Theorem 2.33]).

Further, as we have already shown, equation (4.17) with F given by (4.5) uniquely defines the sought
function u2 and, consequently, equation (4.18) defines explicitly and uniquely the sought function u1

in Ω1 which proves Item (ii).
Item (iii) follows from the uniqueness Theorem 2.4, Corollary 4.3 and Item (ii). �

Remark 4.7. Investigation of the transmission problems with Dirichlet or Neumann boundary con-
ditions on the interior surface S2 can be carried out quite similarly by using the above-employed ar-
guments. Under conditions (2.23), they are uniquely solvable in the spaces H1(Ω2;S2)×

(
H1

loc(Ω1) ∩
Z(Ω1)

)
and H1(Ω2)×

(
H1

loc(Ω1) ∩ Z(Ω1)
)

respectively.

5. Appendix A: Properties of Radiating Potentials

Here, we present some results concerning the properties of the layer potentials defined by (3.2),
(3.3), and the volume potential (cf. (3.4))

Pf(y) :=

∫
R3

Γ(x− y, ω) f(x) dx, y ∈ R3,

in the case of Lipschitz domains which are employed in the main text of the paper. Evidently,

Pf1(y) = Pf̃1(y), where f̃1 is the extension by zero of the function f1 form Ω1 onto its complement
R3 \ Ω1.

We start with the following well known results (for more specific properties see [2–5, 13, 16, 17, 29,
32,43] and references cited therein).

Lemma A.1. (i) [13, Theorem 1(i),(ii)] For all σ ∈ [− 1
2 ,

1
2 ], the following layer potential operators

V : H−
1
2 +σ(S1)→ H1+σ(R3 \ Ω1),

V : H−
1
2 +σ(S1)→ H1+σ

loc (Ω1) ∩ Z(Ω1),

W : H
1
2 +σ(S1)→ H1+σ(R3 \ Ω1),

W : H
1
2 +σ(S1)→ H1+σ

loc (Ω1) ∩ Z(Ω1)

are continuous.
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(ii) [31, Ch.XI, Theorem 11.2]; [16, Proposition 2.1] If f ∈ H0
comp(R3), then Pf ∈ H2

loc(R3)∩
Z(R3) and

A1Pf = f in R3, ‖Pf‖
H2(Ω∗)

6 C∗ ‖f‖
H0(Ωf )

,

where Ω∗ is an arbitrary bounded domain in R3, Ωf := supp f , and C∗ > 0 is a constant which
depends on the diameter of the domain Ω∗.

(iii) [13, Lemma 4.1]; [17, Theorem 1.1] For h ∈ H−
1
2 (S1) and g ∈ H

1
2 (S1), the following

jump relations

γ+
S1
V h = γ−S1

V (h) = V(h), T±1 V h =
(
± 1

2
I +W ′

)
h on S1, (A.1)

γ±S1
W g =

(
∓ 1

2
I +W

)
g, T+

1 W g = T−1 W g =: L g on S1, (A.2)

hold true, where I stands for the identity operator, and

V h(y) := −
∫
S1

Γ(x− y, ω)h(x) dSx, y ∈ S1, (A.3)

W g(y) := −
∫
S1

[T1(x, ∂x)Γ(x− y, ω))] g(x) dSx, y ∈ S1, (A.4)

W ′ h(y) := −
∫
S1

[T1(y, ∂y)Γ(x− y, ω))]h(x) dSx, y ∈ S1, (A.5)

Γ(x, ω) is the radiating fundamental solution defined by (3.5). The operators (A.4) and (A.5) are to
be understood in the Cauchy principal value sense, while (A.3) is a weakly singular integral operator.

(iv) [13, Theorem 1(iii)–(vi)]; [32, Theorems 7.1, 7.2]; [16, Theorems 3.1 & 4.1]; [5,
Corollary 3.6, Theoem 3.10] For all σ ∈ [− 1

2 ,
1
2 ], the operators

V : H−
1
2 +σ(S1)→ H

1
2 +σ(S1), ± 1

2 I +W ′ : H−
1
2 +σ(S1)→ H−

1
2 +σ(S1),

± 1
2 I +W : H

1
2 +σ(S1)→ H

1
2 +σ(S1), L : H

1
2 +σ(S1)→ H−

1
2 +σ(S1),

are continuous Fredholm operators with zero index.

Lemma A.2. Let K and M be defined by (3.15) and (3.16) with α > 0. For all σ ∈ [− 1
2 ,

1
2 ] the

following operators

K ≡ 1

2
I +W ′ + i αV : H−

1
2 +σ(S1)→ H−

1
2 +σ(S1), (A.6)

M≡ L+ i α
(
− 1

2
I +W

)
: H

1
2 +σ(S1)→ H−

1
2 +σ(S1), (A.7)

are invertible.

Proof. Due to Lemma A.1(iv), we need only to prove that the operators (A.6) and (A.7) have the

trivial null-spaces. First, we consider the case σ = 0 and let g ∈ H−
1
2 (S1) be a solution of the

homogeneous equation

K g = 0 on S1, (A.8)

and construct the function v := V g in R3, where V g is the single layer potential defined by (3.2).

Evidently, v ∈ H1, 0(R3 \ Ω1;A1), v ∈ H1, 0
loc (Ω1;A1) ∩ Z(Ω1), A1(∂x, ω)v = A1(∂x, ω)V (g) = 0 in

R3 \ S1, and T±1 v = T±1 V g ∈ H−
1
2 (S1) is well defined. In accordance with relation (3.15), equation

(A.8) is equivalent to the condition(
T+

1 + i α γ+
S1

)
v = 0 on S1, α > 0. (A.9)
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Therefore v solves the homogeneous interior Robin problem in R3 \Ω1. Boundary condition (A.9) and
Green’s formula ∫

R3\Ω1

A1v v dx+

∫
R3\Ω1

[
E1(v, v)− ω2κ1|v|2

]
dx =

〈
T+

1 v , γ
+
S1
v
〉
S1

lead to the equality ∫
R3\Ω1

[
E1(v, v)− ω2κ1|v|2

]
dx+ i α

∫
S1

|γ+
S1
v|2 dS = 0.

By separating imaginary part, we deduce γ+
S1
v = 0 on S1, implying T+

1 v = 0 on S1. Therefore, with the

help of the general integral representation formula of solutions of the homogeneous differential equation
A1v = 0, v = V (T+

1 v) −W (γ+
S1
v), we finally deduce v = V (g) = 0 in R3 \ Ω1. By the continuity

property of the single layer potential across the surface S1 (see the first equation in (A.1)), we have
γ+
S1
v = γ−

S1
v = 0 on S1. Consequently, the radiating function v = V g solves the homogeneous exterior

Dirichlet problem for the operator A1(∂x, ω) and therefore vanishes identically in Ω1. Consequently,
by the jump relations (A.1) for the conormal derivative of the single layer potential, we find that g = 0
on S1 implying that the null-space of the operator (A.6) is trivial.

Now let σ ∈ [− 1
2 ,

1
2 ]. Recall that for − 1

2 6 σ1 < σ2 6 1
2 , the inclusion H−

1
2 +σ2(S1) ⊂ H− 1

2 +σ1(S1)
is continuous and dense. Therefore the null-space of the Fredholm operator (A.6) is the same for all
σ ∈ [− 1

2 ,
1
2 ] (see, e.g., [33, Lemma 11.40], [1, Proposition 10.6]). This completes the proof for operator

(A.6).
The proof for operator (A.7) is quite similar. �

Introduce the boundary operators Ṽ, W̃, W̃ ′, L̃, K̃ and M̃ generated by the single and double

layer potentials Ṽ and W̃ constructed by the exponentially decaying real-valued fundamental solution
Γ(x−y, i) (see (3.5)). Evidently, they are defined by the same formulas as their counterpart operators
V, W, W ′, L, K, M, V and W with Γ(x − y, i) for Γ(x − y, ω) and have all the mapping and jump
properties described in Lemmas A.1 and A.2. In addition, for these “tilde” operators we have the
following assertion.

Lemma A.3. For all σ ∈ [− 1
2 ,

1
2 ] and α > 0, the following operators

Ṽ : H−
1
2 +σ(S1)→ H

1
2 +σ(S1),

±1

2
I + W̃ ′ : H−

1
2 +σ(S1)→ H−

1
2 +σ(S1),

±1

2
I + W̃ : H

1
2 +σ(S1)→ H

1
2 +σ(S1),

L̃ : H
1
2 +σ(S1)→ H−

1
2 +σ(S1),

K̃ ≡ 1

2
I + W̃ ′ + i α Ṽ : H−

1
2 +σ(S1)→ H−

1
2 +σ(S1),

M̃ ≡ L̃+ i α
(
− 1

2
I + W̃

)
: H

1
2 +σ(S1)→ H−

1
2 +σ(S1)

are invertible.

Proof. All the operators stated in the lemma are Fredholm ones with zero index and their null-spaces
are the same for all σ ∈ [− 1

2 ,
1
2 ] (see, e.g., [33, Lemma 11.40], [1, Proposition 10.6]). Therefore it

suffices to show that the null-spaces of the operators are trivial for σ = 0.
Recall that Ω1 := Ω− and Ω+ = R3 \ Ω1.

First, let us prove that the null-space of the operator Ṽ is trivial. Let g ∈ H− 1
2 (S1) be a solution

to the homogeneous equation Ṽg = 0 on S1. Then the single layer potential u = Ṽ (g) belongs to
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H1(Ω±, Ã1) with Ã1 := A1(∂x, i), exponentially decays at infinity, and solves the homogeneous interior
and exterior Dirichlet problems

A1(∂x, i)u = a
(1)
kj ∂k∂ju− κ1 u = 0 in Ω±, γ±

S1
u = 0 on S1 = ∂Ω±.

Consequently, with the help of Green’s formulas (cf. (2.11))∫
Ω±

A1(∂x, i)u(x)u(x) dx+

∫
Ω±

[E1(u, u) + κ1|u(x)|2 ] dx = ±
〈
T±1 u , γ

±
S1
u
〉
S1
, (A.10)

we deduce u = 0 in Ω±, whence g = 0 on S1 follows due to the jump relations for the conormal deriv-

ative of the single layer potential (see Lemma A.1(iii)) which completes the proof for the operator Ṽ.

Now, let us consider the operator M̃ and let h ∈ H 1
2 (S1) be a solution to the homogeneous equation

M̃h = 0 on S1. Then the double layer potential w = W̃ (h) belongs to H1(Ω±; Ã1), exponentially
decays at infinity and solves the homogeneous interior Robin’s problem

A1(∂x, i)w = a
(1)
kj ∂k∂jw − κ1 w = 0 in Ω+, T+

1 w + i α γ+
S1
w = 0 on S1.

Therefore by Green’s formula (A.10), we deduce w = 0 in Ω+ and by Lemma A.1(iii), we have
T+

1 w = T−1 w = 0. Thus, w solves the homogeneous exterior Neumann problem and, consequently,
w = 0 in Ω− in view of (A.10). The jump properties of the double layer potential complete the proof

for the operator M̃. �

For the other operators stated in the lemma the proofs are word for word.

Lemma A.4. For σ ∈ [− 1
2 ,

1
2 ], the operators

V − Ṽ : H−
1
2 +σ(S1)→ H

1
2 +σ(S1), (A.11)

W ′ − W̃ ′ : H−
1
2 +σ(S1)→ H−

1
2 +σ(S1), (A.12)

W − W̃ : H
1
2 +σ(S1)→ H

1
2 +σ(S1), (A.13)

L − L̃ : H
1
2 +σ(S1)→ H−

1
2 +σ(S1), (A.14)

K − K̃ : H−
1
2 +σ(S1)→ H−

1
2 +σ(S1), (A.15)

M−M̃ : H
1
2 +σ(S1)→ H−

1
2 +σ(S1). (A.16)

are compact.

Proof. In view of Remark 3.1 and relations (3.8) and (3.9), the potential type operators V − Ṽ and

W − W̃ for σ ∈ [− 1
2 ,

1
2 ] have the following mapping properties:

V − Ṽ : H−
1
2 +σ(S1)→ H3+σ(Ω2),

W − W̃ : H
1
2 +σ(S1)→ H3+σ(Ω2).

Therefore the traces on S1 of the functions V (h)− Ṽ (h) and W (g)− W̃ (g) with h ∈ H− 1
2 +σ(S1) and

g ∈ H 1
2 +σ(S1) belong to H1(S1) in view of the Lipschitz character of the surface S1. Recall that in

the case of Lipschitz surfaces, the space Hs(S1) is well-defined only for −1 6 s 6 1. Moreover, in

general, the trace of a function from the space Hs(Ω±) belongs either to the space Hs− 1
2 (∂Ω±) if

1
2 < s < 3

2 , or to the space H1(∂Ω±) if s > 3
2 (see, e.g., [13, 15], [23, Section 3]).

Consequently, for σ ∈ (− 1
2 ,

1
2 ), the operators (A.11) and (A.13) are smoothing operators with

the range in H1(S1) which is compactly imbedded in H
1
2 +σ(S1), while operators (A.12), (A.14),

(A.15) and (A.16) are smoothing operators with the range in H0(S1) which is compactly imbedded

in H−
1
2 +σ(S1) for arbitrary σ ∈ (− 1

2 ,
1
2 ).
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For σ = ± 1
2 , the claim can be proved again using relations (3.8) and (3.9). For illustration, we

consider operator (A.11) for σ = 1
2 , i.e., we show the compactness of the operator

V − Ṽ : H0(S1)→ H1(S1).

Let M0 be a bounded subset in H0(S1), i.e. ‖g‖H0(S1) 6 C0 for all g ∈M0. Let {gn}∞n=1 ∈M0 be an
arbitrary sequence and Q(y, x) := Γ(y − x, ω)− Γ(y − x, i) be defined by (3.8). Then the sequence

vn(y) = V(gn)(y)− Ṽ(gn)(y) ≡ Q gn(y) :=

∫
S1

Q(y, x) gn(x) dSx, y ∈ S1,

contains a fundamental subsequence in the norm of the spaceH0(S1) since the Hilbert-Schmidt integral

operator Q : H0(S1)→ H0(S1) is compact. We denote the fundamental subsequence by v
(1)
n = Q g(1)

n .
It is evident that the same arguments can be applied to the sequence

Dyjv
(1)
n (y) = DyjQ g(1)

n (y) =

∫
S1

DyjQ(y, x) gn(x) dSx, y ∈ S1,

where Dyj denotes a tangential differentiation. We again conclude that this sequence contains a

fundamental subsequence in the norm of the space H0(S1). Denote this subsequence by v
(2)
n = Q g(2)

n .

Thus we have shown that the sequence vn = Q gn contains a fundamental subsequence v
(2)
n in the

norm of the space H(1)(S1) which implies that the operator Q : H0(S1) → H1(S1), i.e., operator
(A.11) for σ = 1

2 is compact. For σ = − 1
2 , the claim follows from the duality arguments.

Now let us consider operator (A.13) for σ = 1
2 ,

R :=W − W̃ : H1(S1)→ H1(S1). (A.17)

Further, let M1 ⊂ H1(S1) be a bounded set and {gn}∞n=1 ∈M1 be an arbitrary sequence. It is evident
that the kernel function T1(x, ∂x)Q(y, x) of the weakly singular integral operator

R gn(y) :=

∫
S1

T1(x, ∂x)Q(y, x) gn(x) dSx, y ∈ S1, (A.18)

is bounded on S1×S1 in view of (3.8)–(3.9). Moreover, the kernel function DyjT1(x, ∂x)Q(y, x) of the

operator DyjR gn(y) has a weak singularity of type O(|x− y|−1). Therefore, by the same arguments
as above, we again can show that the sequence {R gn}∞n=1 contains a fundamental subsequence in the
norm of the space H1(S1) which completes the proof for operator (A.17), i.e., for operator (A.13) for
σ = 1

2 .

The duality arguments imply the compactness of operator (A.12) for σ = − 1
2 .

The compactness of operator (A.12) for σ = 1
2 and operator (A.13) for σ = − 1

2 is trivial.

Next, we consider operator (A.14) for σ = 1
2 ,

N := L − L̃ : H1(S1)→ H0(S1).

We have

N g(y) :=

∫
S1

T1(y, ∂y)T1(x, ∂x)Q(y, x) g(x) dSx, y ∈ S1.

It is evident that the kernel function T1(y, ∂y)T1(x, ∂x)Q(y, x) is symmetric and possesses a weak singu-
larity of type O(|x− y|−1) due to (3.8)–(3.9). Therefore the Hilbert-Schmidt operator N : H0(S1)→
H0(S1) is compact, implying the compactness of operator (A.14). By the duality arguments, we
conclude the compactness of operator (A.14) for σ = − 1

2 .
The above results along with relations (A.6)–(A.7) and their counterparts for the “tilde” operators

imply directly the compactness of operators (A.15) and (A.16) for σ = ± 1
2 , which completes the

proof. �
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Remark A.5. Actually, in the proof of Lemma A.4 we have shown the following mapping properties
(cf. [5]):

V − Ṽ : H−
1
2 (S1)→ H1(S1),

W ′ − W̃ ′ : H−
1
2 (S1)→ H0(S1),

W − W̃ : H
1
2 (S1)→ H1(S1),

L − L̃ : H
1
2 (S1)→ H0(S1),

K − K̃ : H−
1
2 (S1)→ H0(S1),

M−M̃ : H
1
2 (S1)→ H0(S1).

For the operator K defined by (A.6), we have the following representation K = T̃ +C with T̃ = 1
2I+W̃ ′

and C =W ′ − W̃ ′ + iαV and by Lemmas A.2 and A.3, we deduce

K−1 = T̃ −1 −K−1CT̃ −1,

K−1M = T̃ −1L̃+ G, (A.19)

where

G := −K−1CT̃ −1M+ T̃ −1
[
L − L̃+ iα

(
− 1

2
I +W

)]
.

By Lemmas A.2, A.3 and A.4, the following operators

K−1CT̃ −1 : H−
1
2 (S1)→ H0(S1),

G : H
1
2 (S1)→ H0(S1) (A.20)

are continuous.

Lemma A.6. There are positive constants C ′1 > 0 and C ′2 > 0 such that

Re 〈−K−1Mψ , ψ〉S1 ≥ C ′1 ‖ψ‖2
H

1
2 (S1)

− C ′2 ‖ψ‖2H0(S1) for all ψ ∈ H 1
2 (S1).

Proof. In view of (A.19), (A.20) and the Schwartz inequality for all ψ ∈ H 1
2 (S1), we have

Re
〈
−K−1Mψ , ψ

〉
S1

= Re
〈
−
[
T̃ −1L̃+ G

]
ψ , ψ

〉
S1

> Re
〈
− T̃ −1L̃ψ , ψ

〉
S1
− |
〈
Gψ , ψ

〉
S1
|

= Re
〈
− T̃ −1L̃ψ , ψ

〉
S1
−
∣∣∣∣ ∫
S1

ψ Gψ dS
∣∣∣∣

> Re
〈
− T̃ −1L̃ψ , ψ

〉
S1
− ‖Gψ‖H0(S1) ‖ψ‖H0(S1)

> Re
〈
− T̃ −1L̃ψ , ψ

〉
S1
− c1 ‖ψ‖

H
1
2 (S1)

‖ψ‖H0(S1) (A.21)

with some positive constant c1.
To estimate the first summand from below, we proceed as follows. The general integral represen-

tation formula for an exponentially decaying solution to the homogeneous equation A1(∂x, i)w = 0 in
Ω1 reads as

w + Ṽ (T−1 w)− W̃ (γ−
S1
w) = 0 in Ω1.

Substituting here w = W̃ϕ with arbitrary ϕ ∈ H 1
2 (S1) and taking the generalized trace of the conormal

derivative on S1, we obtain

L̃
(1

2
I + W̃

)
ϕ =

(1

2
I + W̃ ′

)
L̃ϕ on S1.
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This implies the following operator relation with the domain of definition H
1
2 (S1) and the range

H−
1
2 (S1),

T̃ −1L̃ =
(1

2
I + W̃ ′

)−1

L̃ = L̃
(1

2
I + W̃

)−1

. (A.22)

Further, substituting u = W̃g with g =
(

1
2I + W̃

)−1
ϕ and ϕ ∈ H 1

2 (S1) in (A.10) for Ω− = Ω1 and

taking into consideration the equalities T−1 u = L̃
(

1
2I + W̃

)−1

ϕ and (A.22), we get

−
〈
T−1 u , γ

−
S1
u
〉
S1

=
〈
− T̃ −1L̃ϕ , ϕ

〉
S1

=

∫
Ω1

[E1(u, u) + κ1|u(x)|2 ] dx, (A.23)

where E1 is defined in (2.9). Since the matrix a1 =
[
a

(1)
kj

]3
k,j=1

is positive definite, κ1 > 0 and

γ−S1
u = ϕ, with the help of the trace theorem, from (A.23), we deduce〈

− T̃ −1L̃ϕ , ϕ
〉
S1
> c2 ‖u‖2H1(Ω1) > c3 ‖γ

−
S1
u‖2

H
1
2 (S1)

= c3 ‖ϕ‖2
H

1
2 (S1)

, (A.24)

where c2 and c3 are some positive constants.
Now, using the inequalities (A.24) and

‖ψ‖
H

1
2 (S1)

‖ψ‖H0(S1) 6 ε ‖ψ‖2
H

1
2 (S1)

+
1

4ε
‖ψ‖2H0(S1),

from (A.21), we finally obtain

Re
〈
−K−1Mψ , ψ

〉
S1
> Re

〈
− T̃ −1L̃ψ , ψ

〉
S1
− c1 ‖ψ‖

H
1
2 (S1)

‖ψ‖H0(S1)

> c3 ‖ψ‖2
H

1
2 (S1)

− c1 ‖ψ‖
H

1
2 (S1)

‖ψ‖H0(S1)

> (c3 − εc1) ‖ψ‖2
H

1
2 (S1)

− (4ε)−1c1 ‖ψ‖2H0(S1),

where ε is an arbitrarily small positive number. This completes the proof. �

Remark A.7. In many papers, the one-sided boundary traces of layer potentials and their conormal
derivaives are understood in the nontangential limit sense (for details see, e.g., [17, 32, 43]). Note
that in the case of a bounded Lipschitz domain Ω, a single layer potential V (h) with a density

h ∈ H− 1
2 (∂Ω), as well as a double layer potential W (g) with a density g ∈ H 1

2 (∂Ω), belong to the

space H1(Ω) and possess the Sobolev boundary traces belonging to the space H
1
2 (∂Ω) (see Lemma

A.1). Therefore, for these potentials the nontangential boundary values exist almost everywhere
on ∂Ω and the corresponding nontangential maximal functions are square integrable (see [32, 43]).
Consequently, for these potentials the Sobolev traces and the nontangential traces on ∂Ω coincide
(see, e.g., [2, Remark 6.7]).
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BOUNDEDNESS OF HIGHER ORDER COMMUTATORS OF G-FRACTIONAL

INTEGRAL AND G-FRACTIONAL MAXIMAL OPERATORS WITH G−BMO

FUNCTIONS

ELMAN J. IBRAHIMOV1∗, GULQAYIT A. DADASHOVA1, AND SAADAT AR. JAFAROVA2

Abstract. In this paper we introduce the Gegenbauer BMO (G − BMO) space and study its

basic properties, analogous to the classical case. The John-Nirenberg type theorem is proved for
f ∈ BMOG(R+). Moreover, the notions of a higher order commutator of Gegenbauer fractional

(G-fractional) integral Jb,α,kG and Gegenbauer fractional (G-fractional) maximal operator Mb,α,k
G

with G−BMO function are studied. When commutator b is a (G−BMO) function, the necessary

and sufficient conditions for (Lp;Lq) boundedness of commutators Jb,α,kG and Mb,α,k
G are obtained.

Introduction

The boundedness of the fractional maximal operator, fractional integral and its commutators plays
an important role in harmonic analysis and their applications. In recent decades, many authors have
proved the boundedness of the commutators with BMO functions of fractional maximal operator and
fractional integral operator on some function spaces (see, e.g., [1–4,6–8,13,19]).

The fractional integral operator Iα and fractional maximal operator Mα are defined as follows:

Iαf(x) =

∫
Rn

f(y)

|x− y|n−α
, n ≥ 1, 0 < α < n,

Mαf(x) = sup
r>0

1

rn−α

∫
|x−y|≤r

|f(y)|dy.

Let b ∈ Lloc(Rn), then the commutator is generated by the function b(x) and Iα is defined as the form

[b, Iα]f(x) = b(x)Iα(x)− Iα(bf)(x) =

∫
Rn

[b(x)− b(y)]

|x− y|n−α
f(y)dy.

In [2] and [19], the following theorem is proved by a somewhat different method.

Theorem A. Let 0 < α < n, 1 < p <
n

α
and

1

p
− 1

q
=
α

n
. Then [b, Iα] is bounded from Lp(Rn) to

Lq(Rn) if and only if b ∈ BMO(Rn).

Define the commutator [b,Mα] of the fractional maximal operator Mα as

[b,Mα](f)(x) = sup
r>0

1

rn−α

∫
|x−y|≤r

|b(x)− b(y)||f(y)|dy.

In [19], it is proved that under the conditions of Theorem A [b,Mα] is bounded from Lp(Rn) to Lq(Rn)
if and only if b ∈ BMO(Rn).

In the present paper, we prove theorems on the boundedness of commutators both of the G-
fractional integral and of the G-fractional maximal operator on G−BMO space. The results obtained
here are analogous to the corresponding theorem obtained for the [b, Iα] and [b,Mα] in [2] and [19].

The paper is organized as follows.

2020 Mathematics Subject Classification. 42B25, 42B35, 43A15, 43A80.

Key words and phrases. G-Fractional integral; G-Fractional maximal operator; Commutator, G−BMO space.
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In Section 1, we present some definitions, notations and auxiliary results. In Section 2, theG−BMO
space is introduced and its properties are proved. In Sections 3 and 4 we prove the (Lp,λ; Lq,λ)
boundedness of the commutator of G-fractional integrals and the (Lp,λ; Lq,λ) boundedness of the
commutator of G-fractional maximal operator on G−BMO space, respectively.

1. Definitions, Notations and Auxiliary Results

Our investigation is based on the Gegenbauer differential operator Gλ (see [5])

Gλ ≡ G = (x2 − 1)
1
2−λ

d

dx
(x2 − 1)λ+

1
2
d

dx
, x ∈ (1,∞), λ ∈ (0,

1

2
).

The shift operator Aλchy generated by Gλ is given in the form (see [10,11])

Aλchyf(chx) =
Γ(λ+ 1

2 )

Γ(λ)Γ( 1
2 )

∫
0

f(chxchy − shxshy cosϕ)(sinϕ)2λ−1dϕ

and it possesses all properties of the generalized shift operator given in the monograph due to
B.M.Levitan [16,17].

Let H = H(0, r) = (0, r). For any measurable set E, µE = |E|λ =
∫
E

sh2λydy. For 1 ≤ p < ∞, let

Lp(R+, G) = Lp,λ(R+), R+ = (0,∞) be the space of measurable functions on R+ with the finite norm

‖f‖Lp,λ =

( ∫
R+

|f(chy)|psh2λydy

)1

p
, 1 ≤ p <∞,

‖f‖∞,λ ≡ ‖f‖∞ = ess sup
x∈R+

|f(chx)|, p =∞.

For f ∈ Lloc
1,λ(R+), the G-fractional maximal operator Mα

G and the G-fractional integral JαG are defined

in [14] as follows:

Mα
Gf(chx) = sup

r>0

1

|H|1−
α

2λ+1

λ

∫
H

Aλchy|f(chx)|sh2λydy.

Here |H(0, r)|λ =
r∫
0

sh2λydy is the measure that is absolutely continuous with respect to the Lebesgue

measure of the interval H

JαGf(chx) =

∞∫
0

Aλchyf(chx)

(shy)2λ+1−α sh2λydy.

The next result has been obtained in [14] and gives us the (Lp,λ, Lq,λ) boundedness of Mα
G and JαG

(see also [13,15]).

Theorem B. Suppose that 0 < λ <
1

2
, 0 < α < 2λ+ 1, and 1 ≤ p < 2λ+ 1

α
.

(a) If 1 < p < 2λ+1
α , then the condition 1

p−
1
q = α

2λ+1 is necessary and sufficient for the boundedness

of Mα
G and JαG from Lp,λ(R+) to Lq,λ(R+).

(b) If p = 1, then the condition 1− 1
q = α

2λ+1 is necessary and sufficient for the boundedness of Mα
G

and JαG from L1,λ(R+) to WLq,λ(R+).

We denote by WLq,λ(R+) the spaces of all locally integrable functions f(chx), x ∈ R+, with the
finite norm

‖f‖WLq,λ(R+) = sup
r>0

r|{x ∈ R+ : |f(chx)| > r}|
1
p

λ , 1 ≤ p < q.

Throughout the paper A . B mean that A ≤ CB with some positive constant C, which may depend
on some parameters. If A . B and B . A, we write A ≈ B and say that A and B are equivalent.
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Let H(x, r) = (x− r, x+ r) ∩ [0,∞), r ∈ (0,∞), x ∈ [0,∞). Thus,

H(x, r) =

{
(0, x+ r), 0 ≤ x < r,

(x− r, x+ r), x ≥ r.

We will need the following lemmas.

Lemma 1.1 ([14]). For any µ > 0, the following relation is true:

|H(x, r)|µ
2
≈


(

sh
x+ r

2

)µ+1

, 0 < x+ r < 2,(
sh
x+ r

2

)2µ
, 2 ≤ x+ r <∞.

For x = 0 and µ = 2λ, we have

|H(0, r)|λ ≈
(

sh
r

2

)γ
,

where γ = γλ(r) =

{
2λ+ 1, if 0 < r < 2,

4λ, if 2 ≤ r <∞.

Lemma 1.2 ([11]). If f ∈ Lp,λ(R+) , then for any y ∈ [0,∞), the inequality

‖Achyf‖Lp,λ ≤ ‖f‖Lp,λ , 1 ≤ p ≤ ∞ (1.1)

holds.

2. The Gegenbauer BMO-Space

The space of functions of bounded mean oscillation, or BMOG, naturally arises as the class of
functions whose deviation from their means over intervals is bounded. The L∞ functions have this
property, but there exist unbounded functions with a bounded mean oscillation. Such functions are
slowly growing, and they typically have at most logarithmic blow up. The space BMOG shares similar
properties with the space L∞ and often serves as its substitute. What exactly is a bounded mean
oscillation and what kind of functions have this property?

The mean of a locally integrable function over a set is another word for its average over that set.
The oscillation of a function over a set is the absolute value of the difference of the function from
its mean over this set. The mean oscillation is therefore the average of this oscillation over a set. A
function is said to be of bounded mean oscillation if its mean oscillation over all intervals is bounded.
Precisely, given a locally integrable function f on R+ = (0,∞), denote by

fH(chx) =
1

|H|λ

∫
H

Aλchyf(chx)sh2λydy,

where H = H(0, r), the mean (or average) of f over H. Then the oscillation of f over H are the
functions |Aλchyf(chx)− fH(chx)|, and the mean oscillation of f over H is

1

|H|λ

∫
H

|Aλchyf(chx)− fH(chx)|sh2λydy.

2.1. Definition and some properties of the G−BMO space.

Definition 2.1. We denote by BMOG(R+) the Gegenbauer-BMO space (G − BMO space) as the
set of locally integrable functions on R+ = (0,∞) such that

‖f‖BMOG(R+) = sup
x,r∈R+

1

|H|λ

∫
H

|Aλchyf(chx)− fH(chx)|sh2λydy <∞.

We set

BMOG(R+) =
{
f ∈ Lloc

1,λ(R+) : ‖f‖BMOG(R+) <∞
}
.
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Several remarks are in order. First, it is a simple fact that BMOG(R+) is a linear space, that is,
if f, g ∈ BMOG(R+) and µ ∈ R , then f + g and µf in BMOG(R+), and

‖f + g‖BMOG ≤ ‖f‖BMOG + ‖g‖BMOG , ‖µf‖BMOG = |µ|‖f‖BMOG .

But ‖·‖BMOG is not a norm. The problem is that if ‖·‖BMOG = 0 , this does not imply that f = 0, but
that f is a constant. From Proposition 2.2, every constant function C satisfies ‖C‖BMOG = 0, then
the functions f and f + c have the same BMOG norms. In the sequel, we keep in mind that elements
of BMOG whose difference is a constant are identified. Although ‖ · ‖BMOG is only a seminorm, we
occasionally refer to it as a norm when there is no possibility of confusion.

We begin with the basic properties of BMOG.

Proposition 2.2. The following properties of the BMOG(R+) space are valid:
1) If ‖f‖BMOG = 0, then f is a.e. equal to a constant.
2) L∞(R+) is contained in BMOG(R+) and ‖f‖BMOG ≤ 2‖f‖L∞ .
3) Suppose that there exist a constant A > 0 and for all intervals H in R+ a constant CH such

that

sup
x,r∈R+

1

|H|λ

∫
H

|Aλchyf(chx)− CH |sh2λydy ≤ A, (2.1)

then f ∈ BMOG(R+) and ‖f‖BMOG ≤ 2A.
4) If f ∈ BMOG(R+), y ∈ R+, then Aλchyf is also in BMOG(R+) and

‖Aλchyf‖BMOG ≤ ‖f‖BMOG .

5) Let f be in BMOG(R+) . Given an interval H and a positive integer m, we have

|bH(chx)− b2mH(chx)| ≤ 2m‖b‖BMOG .

Proof. To prove 1), we note that f is a.e. equal to its average CN over every segment [0, N ]. Since
[0, N ] ⊂ [0, N + 1], it follows that CN = CN+1 for all N . This implies the required conclusion.

To prove 2), we using (1.1). Then

Aλchy|Aλchyf(chx)− fH(chx)| ≤ Aλchy
(
|Aλchyf(chx)|+ |fH(chx)|

)
≤2Aλchy|f(chx)| ≤ 2‖f‖L∞ .

For item 3), we get

|Aλchyf(chx)− fH(chx)| ≤ |Aλchyf(chx)− CH |+ |fH(chx)− CH |

≤|Aλchyf(chx)− CH |+
1

|H|λ

∫
H

|Aλchyf(chx)− CH |sh2λydy.

Averaging over H and using (2.1), one has

‖f‖BMOG ≤ 2A.

Let us prove property 4). Applying Lemma 1.2, we have

‖Aλchyf‖BMOG ≤ sup
x,r∈R+

1

|H|λ

∫
H

|AλchyAλchyf(chx)−AλchyfH(chx)|sh2λydy

≤ sup
x,r∈R+

1

|H|λ

∫
H

Aλchy|Aλchyf(chx)− fH(chx)|sh2λydy

≤ sup
x,r∈R+

1

|H|λ

∫
H

|Aλchyf(chx)− fH(chx)|sh2λydy = ‖f‖BMOG .
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Finally, we prove 5). In fact,

|bH(chx)− b2H(chx)| ≤ 1

|H|λ

∣∣∣∣ ∫
H

(
Aλchyf(chx)− f2H(chx)

)
sh2λydy

∣∣∣∣
≤ 2

|2H|λ

∫
H

∣∣Aλchyf(chx)− b2H(chx)
∣∣ sh2λydy ≤ 2‖f‖BMOG .

Then An iteration yields

|bH− b2H + b2H− b22H + · · ·+ b2m−1H− b2mH | ≤ 2m‖f‖BMOG . �

Example. We show that L∞(R+) is a proper subspace of BMOG(R+). We claim that the function
log(shx) is in BMOG(R+), but not in L∞(R+). To prove that it is in BMOG(R+), for every x0 ∈ R+

and r > 0, we choose a constant Cx0,r such that the average |Aλchy log(shx)−Cx0,r| for all y ∈ [0, x0+r]
is uniformly bounded.

Consider the integral

1

|H(0, x0 + r)|λ

x0+r∫
0

∣∣Aλchy log(shx)− Cx0,r

∣∣ sh2λydy,

where Cx0,r = (log r)(log x0), 0 ≤ x0 ≤ 2 and 0 ≤ x0 ≤ arcsh1. We may take r = 1, then

1

|H(0, x0 + 1)|λ

x0+1∫
0

∣∣Aλchy log(shx)
∣∣ sh2λydy

=
1

|H(0, x0 + 1)|λ

x0+1∫
0

∣∣∣Aλchy log(ch2x− 1)
1
2

∣∣∣ sh2λydy

=
1

|H(0, x0 + 1)|λ

x0+1∫
0

∣∣∣∣ Γ(λ+ 1
2 )

Γ(λ)Γ( 1
2 )

π∫
0

log[(chxchy − shxshy cosϕ)2 − 1]
1
2

∣∣∣∣sh2λydy

≤ 1

|H(0, x0 + 1)|λ

x0+1∫
0

|log sh(x+ y)| sh2λydy ≤ log sh(x+ x0 + 1)

≤ log sh(x0 + 1 + arcsh1) ≤ log sh(x0 + 2) ≤ log sh4.

Now, let Cx0,1 = log(2x0), arcsh1 ≤ x ≤ x0, x0 > 2. In this case, we have

1

|H(0, x0 + 1)|λ

x0+1∫
0

∣∣Aλchy log(shx)− log(2x0)
∣∣ sh2λydy

≤ log
sh(x+ x0 + 1)

sh(2x0)
< log

sh(2x0 + 2)

sh2x0
= log

(sh2x0)ch2 + (ch2x0)sh2

sh2x0

= log

(
ch2 +

ch2x0
sh(2x0)

sh2

)
≤ log(ch2 + 2sh2) ≤ log(3ch2),

since chx ≤ 2shx if x ≤ 1.
Thus, according to property 3), log(shx) is in BMOG(R+). It is obvious that log(shx) is not in

L∞(R+).
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Below, we will need some property of BMOG(R+) functions. Observe that if an interval H1 is
contained in the interval H2, then

|fH1
− fH2

| ≤ 1

|H1|λ

∫
H1

|Aλchyf(chx)− fH2
(chx)|sh2λydy

≤ 1

|H1|λ

∫
H2

|Aλchyf(chx)− fH2
(chx)|sh2λydy

≤|H2|λ
|H1|λ

‖f‖BMOG .

Theorem 2.3. BMOG(R+) is a complete space.

Proof. Let {fn} be a Cauchy sequence in BMOG(R+). Thus ‖fn − fm‖BMOG → 0, for n,m → ∞.
We choose a subsequence {fnk} of {fn} such that ‖fnk+1

− fnk‖BMOG <
1
2k

for all k ≥ 1. From this
it follows that

∞∑
k=1

‖fnk+1
− fnk‖BMOG <

∞∑
k=1

1

2k
= 1.

Then for a.e. x ∈ R+,
∞∑
k=1

|fnk+1
− fnk | <∞,

and, consequently, the series

fn1
(chx) +

∞∑
k=1

{fnk+1
(chx)− fnk(chx)}

converges, this is equivalent to the existence of

lim
k→∞

fnk(chx), for a.e. x ∈ R+.

We define the function f as follows:

f(chx) =

{
lim
k→∞

fnk(chx), for a.e. x ∈ R+,

0, otherwise.

Thus we prove that

lim
k→∞

fnk(chx) = f(chx), a.e. x ∈ R+.

By the triangle inequality,

‖fnk‖BMOG =

∥∥∥∥fn1
+

k−1∑
ν=1

(
fnk+1

− fnk
) ∥∥∥∥

BMOG

≤
∥∥∥∥|fn1

|+
k−1∑
ν=1

∣∣fnk+1
− fnk

∣∣ ∥∥∥∥
BMOG

≤‖fn1‖BMOG
+

∥∥∥∥ k−1∑
ν=1

∣∣fnk+1
− fnk

∣∣ ∥∥∥∥
BMOG

≤ ‖fn1‖BMOG
+ 1.

From this it follows that

‖fnk‖BMOG
≤ const, at k →∞,

i.e., f ∈ BMOG(R+).
Now, we show that

‖f − fnk‖BMOG
→ 0, at k →∞.
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In fact,

‖f − fnk‖BMOG
=

∥∥∥∥ ∞∑
ν=k

(
fnν+1

− fnν
) ∥∥∥∥

BMOG

≤
∥∥∥∥ ∞∑
ν=k

∣∣fnν+1 − fnν
∣∣ ∥∥∥∥
BMOG

≤
∞∑
ν=1

∥∥fnν+1 − fnν
∥∥
BMOG

< 1.

By the dominated convergence theorem,

‖f − fnk‖BMOG
→ 0, at k →∞.

Finally, we have to show that {fn} is the Cauchy. Given ε > 0, there exists Nε so, for all n,m > Nε,
we have

‖fn − fm‖BMOG <
ε

2
.

We choose a number nk > Nε such that

‖f − fnk‖BMOG <
ε

2
.

Then we have

‖f − fn‖BMOG ≤ ‖f − fnk‖BMOG + ‖fn − fnk‖BMOG < ε.

This completes the proof. �

The next section needs the following statement.

Theorem 2.4 (Calderon–Zygmund decomposition of R+). Suppose that f is a non-negative integrable
function on R+. Then for any fixed number β > 0, there exists a sequence {(j − 1)r, jr} = {Hj} of
disjoint intervals such that

(1) f(chx) ≤ β, x 6∈
⋃
j

Hj;

(2)
∣∣⋃
j

Hj

∣∣
λ
≤ 1

β ‖f‖L1,λ
;

(3) β <
1

|Hj |λ
∫
Hj

Aλchyf(chx)sh2λydy ≤ 2(2λ+1)nβ, n = 1, 2, . . . .

Proof. Since f ∈ L1,λ(R+), by Lemma 1.2, Aλchyf ∈ L1,λ(R+) and by the integral continuity, we

can decompose R+ into a net of equal intervals (by the Lindelöf covering theorem (see [18]), this is
possible)) such that for every H from the net

1

|H|λ

∫
H

Aλchyf(chx)sh2λydy ≤ β. (2.2)

In fact, for any β > 0, there exists δ = δ(β) > 0 such that for every Hj with measure |Hj |λ = |H|λ < δ,∫
Hj

Aλchyf(chx)sh2λydy < β, (j = 1, 2, . . .),

where

|Hj |λ =

∫
Hj

sh2λydy, (j = 1, 2, . . .).

First, we prove (3). Let H1 = (0, r) be a fixed interval in the net. Then by (2.2), we can write

1

H1

∫
H1

Aλchyf(chx)sh2λydy ≤ β. (2.3)
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We divide the interval H1 into 2n equal intervals and let H ′1 =
(
0, r2n

)
be one from this intervals. By

Lemma 1.1 (then µ = 2λ), one has

|H ′1|λ =

r
2n∫
0

sh2λydy ≈
(

sh
r

2n+1

)2λ+1

, 0 <
r

2n
< 2.

Since for 0 < t < 1, sht ≈ t, we have

|H ′1|λ ≈
(

sh
r

2n+1

)2λ+1

≈
( r

2n+1

)2λ+1

≈
(

1

2n
sh
r

2

)2λ+1

≈ 2−(2λ+1)n|H ′1|λ. (2.4)

Concerning H ′1, there may possibly be two cases:

(A)
1

|H ′1|λ
∫
H′1

Aλchyf(chx)sh2λydy > β.

(B)
1

|H ′1|λ
∫
H′1

Aλchyf(chx)sh2λydy ≤ β.

For case (A), from (2.4) and (2.3), we have

β <
1

|H ′1|λ

∫
H′1

Aλchyf(chx)sh2λydy

≈2(2λ+1)n

|H ′1|λ

∫
H′1

Aλchyf(chx)sh2λydy

.
2(2λ+1)n

|H1|λ

∫
H1

Aλchyf(chx)sh2λydy . 2(2λ+1)nβ.

Here H ′1 we choose as one of the sequences {Hj}.
We consider case (B). Suppose that H ′1 = H2(r, 2r). Dividing the interval into 2n equal partials

and reasoning however, we obtain

β <
1

|H ′2|λ

∫
H′2

Aλchyf(chx)sh2λydy

.
2(2λ+1)n

|H1|λ

∫
H1

Aλchyf(chx)sh2λydy . 2(2λ+1)nβ,

where H ′2 we choose as one of the sequences {Hj}. Further reasoning of the process, we obtain a
sequence of disjoint {Hj} such that

β <
1

|Hj |λ

∫
Hj

Aλchyf(chx)sh2λydy . 2(2λ+1)nβ, (n = 1, 2, . . .).

Proof of (1). Taking into account (2.4), from the Lebesgue differentiation theorem (see [12, Corollary
2.1]), we have

f(chx) = lim
r→0

1

|H(0, r)|λ

∫
H(0,r)

Aλchyf(chx)sh2λydy ≤ β

for a.e. x 6∈
⋃
j

Hj . It remains to prove (2). Passing to the limit by n→∞ in the inequality

∣∣∣∣ ⋃
j=1,2,...,n

Hj

∣∣∣∣
λ

≤
n∑
j=1

|Hj |λ ≤
1

β

n∑
j=1

∫
Hj

f(chx)sh2λxdx,

which is contained in the proof of Theorem 2.4 in [12], we obtain the assertion (2). �
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Remark 2.5. The Calderon–Zygmund decomposition stay valid if we replace R+ by a fixed interval
H0 for f ∈ Lp,λ(H0).

2.2. The John-Nirenberg type theorem. Having stated some basic facts about BMOG, we now
turn to a deeper property of BMOG functions, that is, their exponential integrability. As we saw in
Example 2.5, the function f(chx) = log(shx) is in BMOG.

This function is exponentially integrable over any segment [a, b] of R+ in the sense that

b∫
a

e|f(chx)|sh2λxdx <∞.

It turns out that this is a general property of BMOG functions, and this is the content of the next
theorem.

Theorem 2.6. For all f ∈ BMOG(R+), for all interval H = H(0, r) and α > 0, we have

|{x ∈ H : |Aλchyf(chx)− fH(chx)| > α}|λ

≤ e|H|e
− Aα
‖f‖BMOG with A =

(
2(2λ+1)ne

)−1
.

The proof of this theorem is based on the Calderon–Zygmund decomposition and is the same as
that of Theorem 7.1.6 in [9].

Corollary 2.7. For all 0 < p <∞ and H = H(0, r), one has

sup
r>0

(
1

|H|λ

∫
H

|Aλchyf(chx)− fH(chx)|psh2λydy

) 1
p

. ‖f‖BMOG . (2.5)

Proof. In fact

1

|H|λ

∫
H

|Aλchyf(chx)− fH(chx)|psh2λydy

=
p

|H|λ

∞∫
0

( |Aλchyf(chx)−fH(chx)|∫
0

αp−1dx

)
sh2λydy

=
p

|H|λ

∞∫
0

αp−1
( ∫
{x∈H:|Aλchyf(chx)−fH(chx)|>α}

sh2λydy

)
dx

=
p

|H|λ

∞∫
0

αp−1
∣∣{x ∈ H : |Aλchyf(chx)− fH(chx)| > α}

∣∣
λ
dx

≤ p

|H|λ
e|H|λ

∞∫
0

αp−1e
− Aα
‖f‖BMOG dx

=pe
Γ(p)

Ap
‖f‖BMOG =

e

Ap
Γ(p+ 1)‖f‖BMOG ,

where A =
(
e(2λ+1)ne

)−1
. �

Since inequality (2.7) can be reversed for p > 1 via Hölder’s inequality (see [14, Theorem 3.3]), we
obtain the following important Lp,λ characterization of BMOG norms.

Corollary 2.8. For all 1 < p <∞, we have

sup
x,r∈R+

(
1

|H|λ

∫
H

|Aλchyf(chx)− fH(chx)|psh2λydy

) 1
p

≈ ‖f‖BMOG .
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3. Commutators of Gegenbauer Fractional Integrals

In this section we study the (Lp,λ, Lq,λ) boundedness of commutators of the Gegenbauer fractional
integrals JαG, where

JαGf(chx) =

∞∫
0

Aλchyf(chx)

(shy)γ−α
sh2λydy, α < γ ≤ 2λ+ 1.

We will also illustrate that the boundedness of commutators of JαG may characterize the BMOG(R+)
spaces. First, we will give some related results. Suppose that b ∈ Lloc

1,λ(R+), then the commutator
generated by the function b and the JαG is defined as follows:

Jb,αG f(chx) = b(chx)JαGf(chx)− JαG(bf)(chx)

=

∞∫
0

[Aλchyb(chx)− b(chx)]

(shy)γ−α
Aλchyf(chx)sh2λydy.

This implies that

Jb,αG f(chx) = lim
r→0

{
[bH(chx)− b(chx)]

∞∫
r

Aλchyf(chx)

(shy)γ−α
sh2λydy

+

∞∫
r

Aλchyb(chx)− bH(chx)

(shy)γ−α
Aλchyf(chx)sh2λydy

}
,

where H = H(0, r).
Since b ∈ BMOG(R+), by Theorem 4.1 and Corollary 2.1 in [12], the first term tends to zero a.e.

and

Jb,αG f(chx) =

∞∫
0

[Aλchyb(chx)− bH(chx)]

(shy)γ−α
Aλchyf(chx)sh2λydy.

The k − th order commutator of the JαG we define as follows:

Jb,α,kG f(chx) =

∞∫
0

[Aλchyb(chx)− bH(chx)]k

(shy)γ−α
Aλchyf(chx)sh2λydy.

Theorem 3.1. Suppose that 0 < α < γ ≤ 2λ + 1, 1 < p < γ
α and let 1

p −
1
q = α

γ . Then Jb,α,kG is

bounded from Lp,λ(R+) to Lq,λ(R+), if and only if b ∈ BMOG(R+).

Proof. Sufficiency. Let 0 < α < γ ≤ 2λ+ 1, 1 < p < γ
α and b ∈ BMOG(R+), we get

Jb,α,kG f(chx) =

( r∫
0

+

∞∫
r

)
[Aλchyb(chx)− bH(chx)]k

(shy)γ−α
Aλchyf(chx)sh2λydy

= J1(r) + J2(r). (3.1)

Consider J1(r). By Hölder’s inequality, we have

|J1(r)| ≤
( r∫

0

|Aλchyb(chx)− bH(chx)|kq

(shy)γ−α
sh2λydy

) 1
q
( r∫

0

Aλchy|f(chx)|p

(shy)γ−α
sh2λydy

) 1
p

= J1.1(r) · J1.2(r). (3.2)
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We estimate J1.1(r). One has

J1.1(r) ≤
( ∞∑
k=0

2−kr∫
2−(k+1)r

|Aλchyb(chx)− bH(chx)|kq

(shy)γ−α
sh2λydy

) 1
q

≤
( ∞∑
k=0

(sh r
2k+1 )α

(sh r
2k+1 )γ

2−kr∫
0

|Aλchyb(chx)− bH(chx)|kqsh2λydy

) 1
q

≤(shr)
α
q ‖b‖kBMOG

( ∞∑
k=0

2−(k+1)α

)
. (shr)

α
q ‖b‖BMOG . (3.3)

Now we estimate J1.2(r). One has

J1.2(r) ≤
( ∞∑
k=0

1

(sh r
2k+1 )γ−α

2−kr∫
2−(k+1)r

Aλchy|f(chx)|psh2λydy

) 1
p

≤(shr)
α
p (MG|f(chx)|p)

1
p . (3.4)

Taking into account (3.3) and (3.4) in (3.2), we get

|J1(r)| . (shr)α‖b‖kBMOG (MG|f(chx)|p)
1
p .

Consider J2(r). By Hölder’s inequality, we have

|J2(r)| ≤
∞∫
r

|Aλchyb(chx)− bH(chx)|k
Aλchy|f(chx)|

(shy)γ−α
sh2λydy

≤
( ∞∫
r

|Aλchyb(chx)− bH(chx)|kq

(shy)(γ−α)q
sh2λydy

) 1
q

×
( ∞∫
r

Aλchy|f(chx)|psh2λydy

) 1
p

≤ J ′2(r)‖f‖Lp,λ . (3.5)

For J ′2(r), we have

J ′2(r) ≤
( ∞∑
k=0

2k+1r∫
2kr

|Aλchyb(chx)− bH(chx)|kq

(shy)(γ−α)q
sh2λydy

) 1
q

≤
( ∞∑
k=0

(sh2k)γ−(γ−α)q

(sh2k)γ

2k+1r∫
0

|Aλchyb(chx)− bH(chx)|kqsh2λydy

) 1
q

.

By property (5), we have |bH(chx)− b2kH(chx)| ≤ 2k‖b‖BMOG . Then

J ′2(r) . (shr)
γ
q+α−γ

( ∞∑
k=0

(2k)γ−(γ−α)q

(sh2k)γ

2k+1r∫
0

|Aλchyb(chx)− b2kH(chx)|kqsh2λydy

+

∞∑
k=0

(2k)γ−(γ−α)q

(sh2k)γ

2k+1r∫
0

|bH(chx)− b2kH(chx)|kqsh2λydy

) 1
q

.(shr)α−
γ
p ‖b‖BMOG

( ∞∑
k=0

k

(2k)(γ−α)q−γ

) 1
q

. (shr)α−
γ
q ‖b‖BMOG , (3.6)
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since

1

p
− 1

q
=
α

γ
⇔ 1

q
=

1

p
− α

γ
⇔ 1

q
=
γ − αp
γp

⇔ q =
γp

γ − αp
⇔ (γ − α)q − γ =

(γ − α)γp

γ − αp
− γ > 0⇔ (γ − α)γp

γ − αp
> γ

⇔ (γ − α)p > γ − γp⇔ γp > γ ⇔ p > 1.

From (3.6) and (3.5), we have

|J2(r)| . (shr)α−
γ
q ‖f‖Lp,λ‖b‖BMOG . (3.7)

Taking into account (3.5) and (3.7) in (3.1), we obtain

|Jb,α,kG f(chx)| .
[
(shr)α (MG|f(chx)|p)

1
p + (shr)α−

γ
p ‖f‖Lp,λ

]
‖b‖kBMOG .

The right-hand side attains its minimum for

shr =

(
γ − αp
α

‖f‖Lp,λ
(MG|f |p(chx))

1
p

) p
γ

,

and we have

|Jb,α,kG f(chx)| .
{[ ‖f‖Lp,λ

(MG|f |p(chx))
1
p

]αp
γ

(MG|f |p(chx))
1
p

+

[ ‖f‖Lp,λ
(MG|f |p(chx))

1
p

]− pq
‖f‖Lp,λ

}
‖b‖BMOG

= (MG|f |p(chx))
1
p ‖f‖1−

p
q

Lp,λ
‖b‖kBMOG ,

since
1

p
− 1

q
=
α

γ
⇔ 1− p

q
=
αp

γ
.

From this and Theorem 2.2 in [12], we have

∞∫
0

|Jb,α,kG f(chx)|qsh2λxdx . ‖MG|f |p‖Lp,λ‖f‖
q−p
Lp,λ
‖b‖kqBMOG

. ‖f‖qLp,λ‖b‖
kq
BMOG

.

Thus, we obtain

‖Jb,α,kG f(chx)‖Lq,λ . ‖f‖Lp,λ‖b‖kBMOG .

Necessity. Let 1 < p < γ
α , f ∈ Lp,λ(R+), and let Jb,α,kG act boundedly from Lp,λ(R+) to Lq,λ(R+),

i.e.,

‖Jb,α,kG f(chx)‖Lq,λ . ‖f‖Lp,λ . (3.8)

In what follows, the function f will be assumed positive and monotonically increasing. The dilation
function ft(chx) will be defined as follows:

f(ch(tht)x) ≤ ft(chx) ≤ f(ch(ctht)x), 0 < t < 1,

f(ch(tht)x) ≤ ft(chx) ≤ f(ch(sht)x), 1 ≤ t <∞.
(3.9)

Using (3.9) for 0 < t < 1, we obtain

‖ft‖Lp,λ =

( ∞∫
0

|ft(chx)|psh2λxdx

) 1
p

≤
( ∞∫

0

|f(ch(ctht)x)|psh2λxdx

) 1
p

[(ctht)x = u, x = (tht)u]
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=(tht)
1
p

( ∞∫
0

|f(chu)|psh2λ(tht)udu

) 1
p

≤(tht)
2λ+1
p

( ∞∫
0

|f(chu)|psh2λudu

) 1
p

=(tht)
2λ+1
p ‖f‖Lp,λ =

( sht

cht

) 2λ+1
p ‖f‖Lp,λ

.
1

(cht)
2λ+1
p −(α+

2λ+1−γ
p )

‖f‖Lp,λ . (sht)α−
γ
q ‖f‖Lp,λ . (3.10)

On the other hand,

‖ft‖Lp,λ =

( ∞∫
0

|ft(chx)|psh2λxdx

) 1
p

≥
( ∞∫

0

|f(ch(tht)x)|psh2λxdx

) 1
p

[(tht)x = u, x = (ctht)u]

=(ctht)
1
p

( ∞∫
0

|f(chu)|psh2λ(ctht)udu

) 1
p

≤(ctht)
2λ+1
p

( ∞∫
0

|f(chu)|psh2λudu

) 1
p

=(ctht)
2λ+1
p ‖f‖Lp,λ =

(
cht

sht

) 2λ+1
p

‖f‖Lp,λ

.
1

(sht)
2λ+1
p −(α+

2λ+1−γ
p )

‖f‖Lp,λ . (sht)α−
γ
q ‖f‖Lp,λ . (3.11)

From (3.10) and (3.11), we have

‖ft‖Lp,λ ≈ (sht)α−
γ
q ‖f‖Lp,λ , 0 < t < 1. (3.12)

Now let 1 ≤ t <∞. Then from (3.9), we have

‖ft‖Lp,λ =

( ∞∫
0

|ft(chx)|psh2λxdx

) 1
p

≥
( ∞∫

0

|f(ch(tht)x)|psh2λxdx

) 1
p

[(tht)x = u, x = (ctht)u]

=(ctht)
1
p

( ∞∫
0

|f(chu)|psh2λ(ctht)udu

) 1
p

≤(ctht)
2λ+1
p

( ∞∫
0

|f(chu)|psh2λudu

) 1
p

.(sht)α−
γ
q ‖f‖Lp,λ . (3.13)

On the other hand,

‖ft‖Lp,λ ≤
( ∞∫

0

|ft(ch(sht)x)|psh2λxdx

) 1
p

[(sht)x = u, x =
u

sht
]
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=(sht)−
1
p

( ∞∫
0

|f(chu)|psh2λ u

sht
du

) 1
p

≤(sht)−
2λ+1
p

( ∞∫
0

|f(chu)|psh2λudu

) 1
p

≤(sht)α+
2λ+1−γ

p − 2λ+1
p ‖f‖Lp,λ = (sht)α−

γ
q ‖f‖Lp,λ . (3.14)

From (3.13) and (3.14), we have

‖ft‖Lp,λ ≈ (sht)α−
γ
q ‖f‖Lp,λ , 1 ≤ t <∞. (3.15)

From (3.12) and (3.15),

‖ft‖Lp,λ ≈ (sht)α−
γ
q , 0 < t <∞. (3.16)

Further, from (3.9) for 0 < t < 1, we have

‖Jb,α,kG ft‖Lq,λ =

( ∞∫
0

|Jb,α,kG ft(chx)|qsh2λxdx

) 1
q

≤
( ∞∫

0

|Jb,α,kG f(ch(ctht)x)|qsh2λxdx

) 1
q

[(ctht)x = u, x = (tht)u]

=(tht)
1
q

( ∞∫
0

|Jb,α,kG f(chu)|qsh2λ(tht)udu

) 1
q

≤(tht)
2λ+1
q

( ∞∫
0

|Jb,α,kG f(chu)|qsh2λudu

) 1
q

=(tht)
2λ+1
q ‖Jb,α,kG f‖Lq,λ =

(
sht

cht

) 2λ+1
q

‖Jb,α,kG f‖Lq,λ

.
1

(cht)
2λ+1
q

‖Jb,α,kG f‖Lq,λ .
1

(cht)
γ
q

‖Jb,α,kG f‖Lq,λ

.(sht)−
γ
q ‖Jb,α,kG f‖Lq,λ . (3.17)

On the other hand,

‖Jb,α,kG ft‖Lq,λ ≥
( ∞∫

0

|Jb,α,kG f(ch(tht)x)|qsh2λxdx

) 1
q

[(tht)x = u, x = (ctht)u]

=(ctht)
1
q

( ∞∫
0

|Jb,α,kG f(chu)|qsh2λ(ctht)udu

) 1
q

≥(ctht)
2λ+1
q ‖Jb,α,kG f‖Lq,λ =

(
cht

sht

) 2λ+1
q

‖Jb,α,kG f‖Lq,λ

≥ 1

(sht)
2λ+1
q

‖Jb,α,kG f‖Lq,λ . (sht)−
γ
q ‖Jb,α,kG f‖Lq,λ . (3.18)

From (3.17) and (3.18), we have

‖Jb,α,kG ft‖Lq,λ ≈ (sht)−
γ
q ‖Jb,α,kG f‖Lq,λ , 0 < t < 1. (3.19)
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Now let 1 ≤ t <∞. Then from (3.9), we get

‖Jb,α,kG ft‖Lq,λ ≥
( ∞∫

0

|Jb,α,kG f(ch(sht)x)|qsh2λxdx

) 1
q

[(sht)x = u, x =
u

sht
]

=(sht)−
1
q

( ∞∫
0

|Jb,α,kG f(chu)|qsh2λ u

sht
du

) 1
q

≤(sht)−
2λ+1
q ‖Jb,α,kG f‖Lq,λ ≤ (sht)−

γ
q ‖Jb,α,kG f‖Lq,λ . (3.20)

On the other hand,

‖Jb,α,kG ft‖Lq,λ ≥
( ∞∫

0

|Jb,α,kG f(ch(tht)x)|qsh2λxdx

) 1
q

[(tht)x = u, x = (ctht)u]

=(ctht)
1
q

( ∞∫
0

|Jb,α,kG f(chu)|qsh2λ(ctht)udu

) 1
q

≥(ctht)
2λ+1
q ‖Jb,α,kG f‖Lq,λ ≥ (sht)−

γ
q ‖Jb,α,kG f‖Lq,λ . (3.21)

From (3.20) and (3.21), we have

‖Jb,α,kG ft‖Lq,λ ≈ (sht)−
γ
q ‖Jb,α,kG f‖Lq,λ , 1 ≤ t <∞. (3.22)

Combining (3.19) and (3.22), we obtain

‖Jb,α,kG ft‖Lq,λ ≈ (sht)−
γ
q ‖Jb,α,kG f‖Lq,λ , 0 < t <∞. (3.23)

Taking into account inequality (3.8), as well as (3.23) and (3.16), we obtain

‖Jb,α,kG ft‖Lq,λ ≈ (sht)
γ
q ‖Jb,α,kG ft‖Lq,λ

. (sht)
γ
q ‖ft‖Lq,λ . (sht)α−

γ
q+

γ
q ‖f‖Lq,λ = (sht)α−γ(

1
q−

1
q )‖f‖Lq,λ .

If 1
q −

1
q <

α
γ , then, as t→ 0, we have

‖Jb,α,kG f‖Lq,λ = 0 for all f ∈ Lq,λ(R+).

If 1
q −

1
q >

α
γ then, as t→∞,

‖Jb,α,kG f‖Lq,λ = 0 for all f ∈ Lq,λ(R+),

which cannot be true.
Therefore,

1

q
− 1

q
=
α

γ
. �

4. Commutators of the Gegenbauer Fractional Maximal Operator

Let b ∈ Lloc
1,λ(R+), then the k − th order commutator M b,α,k

G generated by the function b and Mα
G

is defined as follows:

M b,α,k
G f(chx) =

= sup
r∈R+

1

|H|1−
α
γ

λ

∫
H

|Aλchyb(chx)− bH(chx)|kAλchy|f(chx)|sh2λydy, k = 1, 2, . . . ,

where H = H(0, r).
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Theorem 4.1. Suppose that 0 < α < γ ≤ 2λ+ 1, 1 < p < γ
α and 1

p −
1
q = α

γ . Then the commutator

M b,α,k
G is bounded from Lp,λ(R+) to Lq,λ(R+), if and only if b ∈ BMOG(R+).

Proof. Let b ∈ BMOG(R+). For the fixed x ∈ R+ and r > 0, we have

Jb,α,kG |f(chx)| =
∫
R+

|Aλchyb(chx)− bH(chx)|k

(shy)γ−α
Aλchy|f(chx)|sh2λydy

≥
r∫

0

|Aλchyb(chx)− bH(chx)|k

(shy)γ−α
Aλchy|f(chx)|sh2λydy

≥ 1

(shy)γ−α

r∫
0

|Aλchyb(chx)− bH(chx)|kAλchy|f(chx)|sh2λydy

≈ 1

|H|1−
α
γ

λ

∫
H

|Aλchyb(chx)− bH(chx)|kAλchy|f(chx)|sh2λydy. (4.1)

Taking supremum for r > 0 on both sides of (4.1), we obtain

M b,α,k
G f(chx) . Jb,α,kG (|f |)(chx), ∀ ∈ R+.

Thus, when b ∈ BMOG(R+), from this and Theorem 3.1, we have

‖M b,α,k
G f(chx)‖Lq,λ(R+) . ‖f‖Lp,λ(R+).

On the other hand, suppose that M b,α,k
G is bounded from Lp,λ(R+) to Lq,λ(R+). Choose any interval

H in R+,

1

|H|λ

∫
H

|Aλchyb(chx)− bH(chx)|sh2λydy

≈ 1

|H|2λ

∫
H

|Aλchyb(chx)− bH(chx)|sh2λydy ·
∫
H

AλchyχH(chx)sh2λxdx

≈ 1

|H|1+
α
γ

λ

∫
H

(
1

|H|1−
α
γ

λ

∫
H

|Aλchyb(chx)− bH(chx)| ·AλchyχH(chx)sh2λxdx

)
sh2λydy

≈ 1

|H|1+
α
γ

λ

∫
H

M b,α
G (χH(chx))sh2λydy

.
1

|H|1+
α
γ

λ

(∫
H

sh2λydy

) 1
q′
(∫
H

M b,α
G (χH(chx))sh2λydy

) 1
q

.
1

|H|1+
α
γ

λ

|Hλ|
1
q′ ‖M b,α

G χH‖Lq,λ(H) .
1

|H|1+
α
γ

λ

|Hλ|
1
q′ ‖χH‖Lq,λ(H)

.
1

|H|1+
α
γ

λ

|Hλ|
1
q′ |Hλ|

1
p . 1.

Thus b ∈ BMOG(R+). �
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SOME MODULAR INEQUALITIES IN LEBESGUE SPACES WITH A

VARIABLE EXPONENT

MITSUO IZUKI1∗, TAKAHIRO NOI2, AND YOSHIHIRO SAWANO3

Abstract. Our aim is to study the modular inequalities for some operators, for example, the
Bergman projection in Lebesgue spaces with a variable exponent. Under proper assumptions on

the variable exponent, we prove that the modular inequalities hold, if and only if the exponent

almost everywhere is equal to a constant. In order to get the main results, we establish a lower
pointwise bound for these operators of a characteristic function.

1. Introduction

The study on variable exponent analysis has been rapidly developed after the work [18] where
Kováčik and Rákosńık have established fundamental properties of variable Lebesgue spaces (see also
[4, 14, 21]). In particular, the theory of variable function spaces in connection with the boundedness
of the Hardy–Littlewood maximal operator M has been deeply studied. Cruz-Uribe, Fiorenza and
Neugebauer [6, 7] and Diening [9] have independently obtained the log-Hölder continuous conditions
that guarantee the boundedness of M on variable Lebesgue spaces. We also note that the recent
development of variable exponent analysis has the extrapolation theorem from weighted inequalities
to norm inequalities on variable Lebesgue spaces [5, 8].

In general, the boundedness of M on the variable Lebesgue space Lp(·)(Rn) describes that the norm
inequality

‖Mf‖Lp(·)(Rn) ≤ C ‖f‖Lp(·)(Rn) (1.1)

holds for all f ∈ Lp(·)(Rn), where C is a positive constant independent of f . Lerner [19] has pointed
out the crucial difference between the norm inequality (1.1) and the following modular inequality∫

Rn

Mf(x)p(x) dx ≤ C
∫
Rn

|f(x)|p(x)dx. (1.2)

More precisely, Lerner has proved that p(·) must be a constant function whenever 1 < ess inf
x∈Rn

p(x) ≤
ess sup
x∈Rn

p(x) < ∞ and the modular inequality (1.2) holds. Izuki [11] has considered the difference

for some operators arising from the wavelet theory. Izuki, Nakai and Sawano [13, 14] have given an
alternative proof of Lerner’s result. They have also studied the problem in the weighted case [15].

Recently, Izuki, Koyama, Noi and Sawano [12] have considered some modular inequalities for some
operators. In this paper, we focus on three operators below. First, we investigate the Bergman
projection operator on the unit disc D in the complex plane. The generalization of holomorphic
function spaces in terms of variable exponent and the boundedness of Bergman projection operators
on variable exponent spaces have been studied [1–3,16,17]. Among them we focus on the work [1] due
to Chacón and Rafeiro. They defined Bergman spaces Ap(·)(D) with variable exponent p(·) on the
open unit disk D. Applying the local log-Hölder continuous condition and the extrapolation theorem,
they proved the density of the set of polynomials in Ap(·)(D) and the boundedness of the Bergman
projection P : Lp(·)(D) → Ap(·)(D). In particular, Chacón and Rafeiro [1] have obtained the norm
inequality

‖Pf‖Lp(·)(D) ≤ C ‖f‖Lp(·)(D) (1.3)
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for all f ∈ Lp(·)(D).
Our second target operator is

BR2
+
f(z) =

−1

π

∫
R2

+

f(w)

(z − w)2
dA(w), z = x+ iy ∈ R2

+,

where dA(w) denotes the Lebesgue measure and R2
+ is the upper half-space over R2 ' C. Via this

identification of R2 and C, the space Ap(·)(R2
+) is defined to be the set of all holomorphic functions

which belong to Lp(·)(R2
+). Karapetyants and Samko [17] proved that BR2

+
is a projection from

Lp(·)(R2
+) onto Ap(·)(R2

+) if p(·) ∈ P(R2
+), the set of all measurable functions p(·) : R2

+ → (0,∞) such
that log log p(·) ∈ L∞(R2

+), satisfies the log-Hölder condition and the log-decay condition [17, Theorem
3.1 (1)]. So, they have obtained the norm inequality

‖BR2
+
f‖Lp(·)(R2

+) ≤ C‖f‖Lp(·)(R2
+) (1.4)

for all f ∈ Lp(·)(R2
+).

Finally, we consider bRn+ , the harmonic projection in Rn+. Let Rn+ stand for the upper half-space

over Rn with n ≥ 2. For x = (x1, x2, . . . , xn), we write x′ = (x1, x2, . . . , xn−1) and x̄ = (x′,−xn). As
usual, hp(Rn+) stands for the harmonic Bergman space of harmonic functions that belong to Lp(Rn+).
Once again dA(x) denotes the Lebesgue measure. The corresponding Bergman projection bRn+ defined

by

bRn+f(x) =

∫
Rn+

R(x, y)f(y)dA(y)

=
2

π
n
2

Γ
(n

2

) ∫
Rn+

n(xn + yn)− |x− ȳ|2

|x− ȳ|n+2
f(y)dA(y),

is bounded from Lp(Rn+) onto hp(Rn+) [22]. Namely, bRn+f ∈ h
p(Rn+) and the norm inequality

‖bRn+f‖Lp(Rn+) ≤ C‖f‖Lp(Rn) (1.5)

hold for all f ∈ Lp(Rn+). Karapetyants and Samko have extended (1.5) to the variable exponent
settings [17, Theorem 5.1].

In the present paper, we consider the modular inequalities corresponding to the norm inequalities
(1.3), (1.4) and (1.5). More precisely, for example, if p(·) satisfies

1 < ess sup
z∈D

p(z) ≤ ess sup
z∈D

p(z) <∞

and the modular inequality ∫
D

|Pf(z)|p(z)dA(z) ≤ C
∫
D

|f(z)|p(z)dA(z)

holds for all f ∈ Lp(·)(D), then the variable exponent p(·) must be a constant function. We can prove
similar results for BRn+ and bRn+ . In order to prove them, we need a lower bound for the image of the

characteristic function of a certain set. We will show a key lemma for the lower bound before the
statement of the main results.

In the present paper we will use the following notation.
1. Given a measurable set E, we denote the Lebesgue measure of E by |E|. We define the

characteristic function of E by χE .
2. A symbol C always stands for a positive constant, independent of the main parameters.
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2. Function Spaces with Variable Exponent

Let D be the open unit disk in the complex plane C, that is,

D := {z ∈ C : |z| < 1}.

Let also Rn+ be the upper half plane, that is,

Rn+ := {x = (x′, xn) ∈ Rn : x′ ∈ Rn−1, xn > 0}.

In the present paper we concentrate on the theory on function spaces defined on D or Rn+ with n ≥ 2.
We first define some fundamental notation on variable exponents. Let X denote either D or Rn+.

Definition 2.1.
1. Given a measurable function p(·) : X → [1,∞), we define

p+ := ess sup
z∈X

p(z), p− := ess inf
z∈X

p(z).

2. The set P(X) consists of all measurable functions p(·) : X → [1,∞) satisfying 1 < p− and
p+ <∞.

Chacón and Rafeiro [1] defined generalized Lebesgue spaces and Bergman spaces on D with a
variable exponent.

Definition 2.2. Let dA(z) be the normalized Lebesgue measure on X and p(·) ∈ P(X). The Lebesgue
space Lp(·)(X) consists of all measurable functions f on X satisfying that the modular

ρp(f) :=

∫
X

|f(z)|p(z) dA(z)

is finite. The Bergman space Ap(·)(D) is the set of all holomorphic functions f on D such that
f ∈ Lp(·)(D).

We note that Lp(·)(X) is a Banach space equipped with the norm

‖f‖Lp(·)(X) := inf {λ > 0 : ρp(f/λ) ≤ 1} .

The projection P : L2(D)→ A2(D) is called the Bergman projection and given by

Pf(z) =

∫
D

f(w)

(1− w̄z)2
dA(w).

It is known that P : Lp(D) → Ap(D) is bounded in the case where p(·) = p ∈ (0,∞) is a constant
exponent [10,22]. See also [20] for the case of p = 2.

Chacón and Rafeiro [1, Theorem 4.4] proved the following boundedness

Theorem 2.3. Suppose that p(·) ∈ P(D) satisfies the local log-Hölder continuous condition

|p(z1)− p(z2)| ≤ C

log(e + 1/|z1 − z2|)
(z1, z2 ∈ D).

Then the Bergman projection P is bounded from Lp(·)(D) to Ap(·)(D), in particular, the norm in-
equality

‖Pf‖Lp(·)(D) ≤ C ‖f‖Lp(·)(D)

holds for all f ∈ Lp(·)(D).

In the following sections, we consider the modular inequalities corresponding to the norm inequal-
ities (1.3), (1.4) and (1.5).
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3. Bergman Projection on D

Theorem 3.1. Let p(·) ∈ P(D). If the modular inequality∫
D

|Pf(z)|p(z)dA(z) ≤ C
∫
D

|f(z)|p(z)dA(z) (3.1)

holds for all f ∈ Lp(·)(D), then p(z) equals to a constant for almost every z ∈ D.

In order to prove this theorem, we apply the following lower pointwise estimate for the Bergman
projection.

Lemma 3.2. Let τ ∈ D. Then there exists a compact neighborhood Kτ of τ such that

Re(PχE(z)) ≥ cτ |E|

for all measurable sets E ⊂ Kτ , where cτ is a positive constant depending only on τ .

Proof. Note that there exists a compact neighborhood Kτ of τ such that

cτ := inf
z,w∈Kτ

Re

(
1

(1− w̄z)2

)
> 0.

Thus,

Re(PχE(z)) =

∫
E

Re

(
1

(1− w̄z)2

)
dA(w) ≥ cτ

∫
E

dA(w) = cτ |E|,

as required. �

Now we prove Theorem 3.1.

Proof of Theorem 3.1. Let τ ∈ D and Kτ be the compact neighborhood appearing in Lemma 3.2.
Assume that p(z) does not equal to any constant for almost every z ∈ Kτ . Then we can find subsets
K±τ of Kτ such that

sup
z∈K−τ

p(z) < inf
z∈K+

τ

p(z). (3.2)

Using Lemma 3.2 and modular inequality (3.1), we have∫
K+
τ

(kcτ |K−τ |)p(z) dA(z) ≤
∫
K+
τ

|kPχK−τ (z)|p(z) dA(z) ≤ C
∫
D

(kχK−τ )p(z) dA(z)

for all k > 0. Consequently, if kcτ |K−τ | > 1 and k > 1, then we obtain

|K+
τ |(kcτ |K−τ |)

ess inf
z∈K+

τ
p(z) ≤ C|K−τ |k

ess sup
z∈K−τ

p(z)
.

This contradicts (3.2). Consequently, it follows that for all τ ∈ D there exists a compact neighborhood
Kτ such that p(z) is equal to a constant for almost every z ∈ Kτ . Since D is connected, it follows
that p(z) is equal to a constant for almost every z ∈ D. �

4. Bergman Projection onto R2
+

As the following lemma shows, BR2
+

is not degenerate.

Lemma 4.1. Let τ ∈ R2
+. Then there exists a compact neighborhood Kτ of τ such that

Re
(
BR2

+
(χE)(z)

)
≥ Cτ |E|

for all measurable sets E ⊂ Kτ .
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Proof. Let τ = α+ βi ∈ C ' R2
+. Firstly, we prove that there exist Cτ and a compact neighborhood

Kτ of τ such that

Re

(
1

(z − w)2

)
≤ −Cτ < 0

holds for any z, w ∈ Kτ . To do this, we consider the real part of (z − w)2 keeping in mind that

Re

(
1

(z − w)2

)
= Re

(
(z − w)2

|z − w|4

)
.

We can take γ > 0 so that β − γ > 0 because β > 0. We learn that

Kτ = {x+ yi : α− (β − γ)/2 ≤ x ≤ α+ (β − γ)/2, β − γ ≤ y ≤ β + γ}(⊂ R2
+)

makes the job. In fact, let z = a+ bi, w = c+ di ∈ Kτ . It is easy to see that Re(z − w)2 < 0, since

(z − w)2 = (a− c)2 − (b+ d)2 − 2(a− c)(b+ d)i

and |a− c| ≤ β − γ < 2(β − γ) ≤ |b+ d|.
Consequently, from the property of Kτ , we have

Re(BR2
+

(χE(z))) =
−1

π

∫
E

Re

(
1

(z − w)2

)
dA(w) ≥ Cγ

∫
E

dA(w) = cγ |E|

for any E ⊂ Kτ . �

Using Lemma 4.1 and an argument similar to the proof of Theorem 3.1, we obtain the following
theorem. So we omit the proof.

Theorem 4.2. Let p(·) ∈ P(R2
+). If the modular inequality∫

R2
+

∣∣∣BR2
+
f(z)

∣∣∣p(z) dA(z) ≤ C
∫
R2

+

|f(z)|p(z) dA(z)

holds for all f ∈ Lp(·)(R2
+), then p(z) is equal to a constant for almost every z ∈ R2

+.

5. Harmonic Projection in Rn+
The same technique can be applied to the harmonic projection over Rn+.

Theorem 5.1. Let p(·) ∈ P(Rn+). If the modular inequality∫
Rn+

∣∣∣bRn+f(z)
∣∣∣p(z) dA(z) ≤ C

∫
Rn+

|f(z)|p(z) dA(z)

holds for all f ∈ Lp(·)(Rn+), then p(z) is equal to a constant for almost every z ∈ Rn+.

Proof. Let x = (x′, xn) ∈ Rn+ be fixed. Then we have

n(xn + zn)− |x− z̄|2

|x− z̄|n+2
=
n− 2xn

2n+1
xn
−n−1

for z = (z′, zn) = x = (x′, xn). Based on this equality, we will prove that p(z) is equal to a constant
for almost every z ∈ Rn+ via three steps.

1. If xn <
n
2 , then we obtain

n(xn + yn)− |x− ȳ|2

|x− ȳ|n+2
>
n− 2xn

2n+3
xn
−n−1 > 0

as long as y = (y′, yn) belongs to an open neighborhood U of x. Thus, if we go through the same
argument as before, we see that p(z) is equal to a constant p1 for almost every z ∈ Rn+ with zn >

n
2 .

2. If xn >
n
2 instead, then we obtain

n(xn + yn)− |x− ȳ|2

|x− ȳ|n+2
<
n− 2xn

2n+3
xn
−n−1 < 0
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as long as y = (y′, yn) belongs to an open neighborhood U of x. Thus, if we go through the same
argument as before, we see that p(z) equals to a constant p2 for almost every z ∈ Rn+ with zn <

n
2 .

3. Finally, we prove that p1 = p2. To this end, we consider a small neighborhood U at (0, n4 ) and
a small neighborhood V at (0, 3n). Since

n(xn + zn)− |x− z̄|2

|x− z̄|n+2
< 0

if x = (0, n4 ) and z = (0, 3n),

n(xn + zn)− |x− z̄|2

|x− z̄|n+2
≤ −cn

for any x ∈ U and z ∈ V for some cn > 0. Thus, we can through the same argument as before, to
conclude that p1 = p2. �
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COMPLEX REPRESENTATION IN THE PLANE THEORY OF

VISCOELASTICITY AND ITS APPLICATIONS

TSIALA JAMASPISHVILI

Abstract. The complex representation in the plane theory of viscoelasticity and Kolosov–Muskhe-
lishvili’s type formulas in the conditions of plane deformation and in the plane stressed state are

obtained. Investigation of various possible forms of viscoelastic correlations can be found in [1–4,

6–9, 11]. Certain contact problems of viscoelastic bodies and the corresponding integro-differential
equations are studied in [5,12,13]. The present paper considers the problem of a rigid punch on the

boundary of a half-plane in the presence of fraction.

1. Introduction

Basic equations of the creep theory expressing the connection between stresses and deformations
of hereditary aging media under small deformations have the form [1,4, 11]

2eij (t, r) =
sij (t, r)

G (t)
−

t∫
t0

sij (τ, r)K1 (t, τ) dτ ((i, j) = 1, 2, 3) ,

ε (t, r) =
σ (t, r)

E∗ (t)
−

t∫
t0

σ (τ, r)K2 (t, τ) dτ,

(1.1)

where t is time, r is the radius-vector of the point, t0 is the age of the material element at the
moment of loading, sij(t, r) and eij(t, r) are, respectively, the tensor deviator components of stress
and deformation, G(t) is the instantaneous shear modulus, E∗(t) is the instantaneous volumetric
deformation, ε (t, r) is the mean deformaton, σ (t, r) is the mean stress, K1 (t, τ) and K2 (t, τ) are the
kernels of shearing and volumetric creep deformation, respectively, which can be represented in the
form

K1 (t, τ) =
∂

∂τ

[
1

G (τ)
+ ω (t, τ)

]
, K2 (t, τ) =

∂

∂τ

[
1

E∗ (τ)
+ C∗ (t, τ)

]
,

where ω (t, τ) and C∗ (t, τ), are the creep measures of shearing and volumetric deformation. As
is known, the components of stress and deformation tensors σij and εij are connected with the
components of the corresponding deviator as follows:

sij = σij − σδij , σ =
1

3
σii, eij = εij − εδij , ε =

1

3
εii;

here, δij is the Kronecker symbol.
For one-dimensional stressed state of tension-compression we have

εii (t, r) =
σii (t, r)

E (t)
−

t∫
t0

σii (τ, r)K (t, τ) dτ, (1.2)

K (t, τ) = ∂
∂τ

[
1

E(τ) + C (t, τ)
]

is the creep kernel of tension-compression deformation, E(t) is the

instantaneous Young modulus, C(t, τ) is the creep measure of tension-compression deformation. The
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following correlations are known:

G (t) =
E (t)

2 (1 + ν1 (t))
, E∗ (t) =

E (t)

1− 2ν1 (t)
,

ω (t, τ) = 2 [1 + ν2 (t, τ)]C (t, τ) , C∗ (t, τ) = [1 + 2ν2 (t, τ)]C (t, τ) ,

where ν1 (t) is the Poisson coefficient of elasto-instantaneous deformation, ν2 (t, τ) is the Poisson
coefficient of creep deformation.

Elasto-instantaneous modules are the positive, continuous, bounded and monotonically increasing
functions on every t0 ≤ τ <∞, therefore they may satisfy the following conditions:

dE (τ)

dτ
> 0 (τ <∞) , E (τ) ∼ E0 <∞ (τ →∞) , E (t0) > 0,

where E0 is an elastic modulus of the material, rather large in age. Creep measures are the nonnegative,
continuous functions of two variables with the following properties: t0 ≤ τ ≤ t ≤ ∞.

C (t, t) = 0, C (t, τ) ∼ ϕ (τ) (t→∞) ,

C (t, τ) ∼ ψ (t− τ) (τ →∞, τ ≤ t) , ∂C (t, τ)

∂t
> 0,

∂C (t, τ)

∂τ
< 0 (τ ≤ t <∞) .

ϕ (τ) defines the aging process of the material, and the function ψ (y) characterizes hereditary prop-
erties of the material, moreover,

dϕ (τ)

dτ
< 0 (τ <∞) , ϕ (τ) ∼ C0 > 0 (τ →∞) , ϕ (t0) <∞,

dψ (y)

dy
> 0 (y <∞) , ψ (y) ∼ C0 (y →∞) , ψ (0) = 0,

where C0 is the limiting creeping measure for the material, highly large in age.
In view of the above-mentioned properties, the creeping measure C(t, τ) is usually representable in

the form [4]:

C (t, τ) = ϕ (τ)
(

1− e−γ(t−τ)
)
, γ = const . (1.3)

The correlations expressing stress components through deformation components are obtained from
(1.1) and (1.2) by solving the Volterra integral equations. From (1.2) we get [11]:

σii (t, r)

E (t)
= εii (t, r) +

t∫
t0

εii (τ, r)R (t, τ)dτ.

Here, R (t, τ) is called a kernel of relaxation, or in other words, the resolvent of creeping kernel K (t, τ).

2. Complex Representations in the Plane Theory of Viscoelasticity

(a) For a plane stressed state σ13 = σ23 = σ33 = 0, all the rest components of stresses together
with the components of deformation are the functions of variables (t, x, y), therefore correlations (1.1)
take the form

εij (t, x, y) =
1 + ν1 (t)

E (t)
σij −

t∫
t0

σij
∂

∂τ

[
1 + ν1 (τ)

E (τ)
+ (1 + ν2 (t, τ))C (t, τ)

]
dτ

−δij
ν1 (t)

E (t)
(σ11 + σ22) + δij

t∫
t0

∂

∂τ

[
ν1 (τ)

E (τ)
+ ν2 (t, τ)C (t, τ)

]
(σ11 + σ22) dτ, i, j = 1, 2, (2.1)

ε33 (t, x, y) = −ν1 (t)

E (t)
(σ11 + σ22) +

t∫
t0

∂

∂τ

[
ν1 (τ)

E (τ)
+ ν2 (t, τ)C (t, τ)

]
(σ11 + σ22) dτ.
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(b) For a plane deformation, ε11 and ε22 are independent of z, ε33 (t, x, y) = 0. Assuming E (t) =
E = const, ν1 (t) = ν2 (t, τ) = ν = const, we obtain σ33 = ν (σ11 + σ22), and equalities (1.1) take the
form

εij (t, x, y) =
1 + ν

E
σij − (1 + ν)

t∫
t0

σij
∂

∂τ
C (t, τ) dτ − δij

ν (1 + ν)

E
(σ11 + σ22)

+δijν (1 + ν)

t∫
t0

∂

∂τ
C (t, τ) (σ11 + σ22) dτ, i, j = 1, 2. (2.2)

Expressions (2.1) and (2.2) are the analogues of Hook’s law in the theory of viscoelasticity, i.e., they
establish a connection between the components of deformation and stress tensors in the conditions of
plane deformation and plane stressed state, respectively.

In the absence of body forces, the equilibrium equations take the form

∂σ11 (t, x, y)

∂x
+
∂σ12 (t, x, y)

∂y
= 0,

∂σ21 (t, x, y)

∂x
+
∂σ22 (t, x, y)

∂y
= 0.

As is known [10], these equalities result in

σ11 (t, x, y) =
∂2U (t, x, y)

∂y2
, σ22 (t, x, y) =

∂2U (t, x, y)

∂x2
, σ12 (t, x, y) = −∂

2U (t, x, y)

∂x∂y
,

where U (t, x, y) is the stress function or the Airy function. ∆∆U = 0, ∆ ≡ ∂2

∂x2 + ∂2

∂y2 .

Equalities (2.2) yield

ε11 (t, x, y) =
(1 + ν)

(
∆U − ∂2U

∂x2

)
E

− (1 + ν)

t∫
t0

∂

∂τ
C (t, τ)

(
∆U − ∂2U

∂x2

)
dτ − ν (1 + ν)

E
∆U

+ν (1 + ν)

t∫
t0

∂

∂τ
C (t, τ) ∆Udτ,

ε22 (t, x, y) =
(1 + ν)

(
∆U − ∂2U

∂y2

)
E

− (1 + ν)

t∫
t0

∂

∂τ
C (t, τ)

(
∆U − ∂2U

∂y2

)
dτ − ν (1 + ν)

E
∆U

+ν (1 + ν)

t∫
t0

∂

∂τ
C (t, τ) ∆Udτ.

(2.3)

Introducing the notation ∆U ≡ P and considering holomorphic functions F (z, t) = P + iQ (∆P =

0, ∆Q = 0) and ϕ (z, t) = p + iq = 1
4

∫
F (z, t) dz, we have P = 4 ∂p∂x = 4 ∂q∂y , whence (2.3) takes the
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form

ε11 (t, x, y) =
∂u1
∂x

=
(1 + ν)

(
4 ∂p∂x −

∂2U
∂x2

)
E

− (1 + ν)

t∫
t0

∂

∂τ
C (t, τ)

(
4
∂p

∂x
− ∂2U

∂x2

)
dτ

−4ν (1 + ν)

E

∂p

∂x
+ 4ν (1 + ν)

t∫
t0

∂

∂τ
C (t, τ)

∂p

∂x
dτ,

ε22 (t, x, y) =
∂u2
∂y

=
(1 + ν)

(
4 ∂q∂y −

∂2U
∂y2

)
E

− (1 + ν)

t∫
t0

∂

∂τ
C (t, τ)

(
4
∂q

∂y
− ∂2U

∂y2

)
dτ

−4ν (1 + ν)

E

∂q

∂y
+ 4ν (1 + ν)

t∫
t0

∂

∂τ
C (t, τ)

∂q

∂y
dτ ,

(2.4)

where u1, u2 are displacement components.
As a result of integration of each of the correlations (2.4), we get

u1 =
(1 + ν)

(
4p− ∂U

∂x

)
E

− (1 + ν)

t∫
t0

∂

∂τ
C (t, τ)

(
4p− ∂U

∂x

)
dτ

−4ν (1 + ν)

E
p+ 4ν (1 + ν)

t∫
t0

∂

∂τ
C (t, τ) pdτ + f1 (y, t),

u2 =
(1 + ν)

(
4q − ∂U

∂y

)
E

− (1 + ν)

t∫
t0

∂

∂τ
C (t, τ)

(
4q − ∂U

∂y

)
dτ

−4ν (1 + ν)

E
q + 4ν (1 + ν)

t∫
t0

∂

∂τ
C (t, τ) qdτ + f2 (x, t).

(2.5)

Taking into account the third equality of (2.2), it follows that

f ′1y (y, t) + f ′2x (x, t) = 0,

from which f1 (y, t) = εyt+ α, f2 (x, t) = −εxt+ β, i.e., f1 (y, t) and f2 (x, t) provide a rigid displace-
ment of the body which can be neglected. From equality (2.5) we have

u1 + iu2 =
(1 + ν)

E

(
4ϕ (z, t)−

(
∂U

∂x
+ i

∂U

∂y

))

− (1 + ν)

t∫
t0

∂

∂τ
C (t, τ)

[
4ϕ (z, τ)−

(
∂U

∂x
+ i

∂U

∂y

)]
dτ

−4ν (1 + ν)

E
ϕ (z, t) + 4ν (1 + ν)

t∫
t0

∂

∂τ
C (t, τ)ϕ (z, τ)dτ. (2.6)

As is known [10], from a general solution of biharmonic equation, the Goursat formula U=Re [zϕ (z, t)

+χ (z, t)], we find that ∂U
∂x + i∂U∂y = ϕ (z, t) + zϕ′ (z, t) + ψ (z, t), where ∂χ(z,t)

∂z = ψ (z, t), ϕ (z, t) and

ψ (z, t) are holomorphic functions of the variable z = x+ iy.
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If we introduce the notation

(I − L) g (t) =
g (t)

E
−

t∫
t0

∂

∂τ
C (t, τ) g (τ) dτ,

then expression (2.6) can be written as

u1 + iu2 = (1 + ν) (I − L)
(

(3− 4ν)ϕ (z, t)− (zϕ′ (z, t) + ψ (z, t))
)
, (2.7)

and for a plane stressed state, an analogous reasoning results in

u1 + iu2 = (I − L)
(

(3− ν)ϕ (z, t)− (1 + ν) (zϕ′ (z, t) + ψ (z, t))
)
. (2.8)

Correlations (2.7) and (2.8) together with the relations

σ11 + σ22 = 4
[
Φ (z, t) + Φ (z, t)

]
, σ22 − σ11 + 2iσ12 = 2

[
zΦ

′
(z, t) + Ψ (z, t)

]
,

where Φ (z, t) = ϕ′ (z, t), Ψ (z, t) = ψ′ (z, t), are the analogues of the well-known Kolosov–Muskhelishvi-
li’s formulas in the theory of viscoelasticity.

3. Solution of the Punch Problem for a Half-plane

Let in the conditions of plane deformation a viscoelastic body occupy a half-plane y < 0 which
we denote by S−, so the body S− leaves on the right when moving along the ox-axis in a positive
direction. We denote the upper half-plane by S+ and the ox-axis by L.

Assume also that the principal vector (X,Y ) of outer forces applied to the boundary is finite,
stresses and rotations vanish at infinity. Thus, for large |z|, we have

Φ (z, t) =
X + iY

2πz
+ o

(
1

z

)
, Φ′ (z, t) = −X + iY

2πz2
+ o

(
1

z2

)
, Ψ (z, t) =

X − iY
2πz

+ o

(
1

z

)
.

For a half-plane, Kolosov–Muskhelishvili’s formulas take the form [10]:

σ12 − σ11 + 2iσ12 = 2
[
Φ

′
(z, t) (z − z)− Φ (z, t)− Φ (z, t)

]
,

σ22 − iσ12 = Φ (z, t)− Φ (z, t) + (z − z) Φ′ (z, t), (3.1)

u′1 + iu′2 = (1 + ν) (I − L)
[
(3− 4ν) Φ (z, t) + Φ (z, t) + (z − z) Φ′ (z, t)

]
. (3.2)

Equality (3.2) is written for the case of plane deformation. The prime denotes the derivative with
respect to the variable z, and in the sequel, the dot will denote the derivative with respect to the
variable t.

A punch with a base of given shape, with a force directed vertically downwards, acts along the
segment L′ = [a; b] of the boundary. Let the punch displacement along the boundary normal be
translational (vertically downwards) in the conditions of friction. The boundary conditions have the
form

T (x, t) = kP (x, t) , x ∈ L′, (3.3)

v− (x, t) = f (x, t) + const, x ∈ L′, (3.4)

T (x, t) = P (x, t) = 0, x ∈ L− L′, (3.5)

where f (x, t) is the given function defining the punch profile at the moment t = t0, i.e., y = f (x, t0)
is the punch profile equation.

Let f ′ (x, t) satisfy the Hölder (H) condition with respect to the variable x, and P0 (t) =
b∫
a

P (x, t) dx,

T0 (t) = kP0 (t). From (3.1) and (3.2), passing to the boundary values as y → 0−, we obtain

Yy − iXy = Φ− (x, t)− Φ+ (x, t) ,

u′ + iv′ = (1 + ν) (I − L)
[
(3− 4ν) Φ− (x, t) + Φ+ (x, t)

]
,
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whence, in view of the boundary conditions (3.3)–(3.5), we have

(1− ik) Φ+ (x, t) + (1 + ik) Φ
+

(x, t) = (1− ik) Φ− (x, t) + (1 + ik) Φ
−

(x, t) , (3.6)

(1 + ν) (I − L)
[
(3− 4ν) Φ− (x, t) + Φ+ (x, t)− (3− 4ν) Φ

+
(x, t)− Φ

−
(x, t)

]
= 2if ′ (x, t) . (3.7)

From (3.6), according to the Liouville theorem, (1− ik) Φ (z, t) + (1 + ik) Φ (z, t) = 0. Taking into
account the last correlation in (3.7), we obtain

(I − L)
[
Φ+ (x, t)− gΦ− (x, t)

]
= f0 (x, t) , (3.8)

where

g = − (3− 4ν) (1 + ik) + 1− ik
1 + ik + (3− 4ν) (1− ik)

, f0(x, t) =
2i (1 + ik)

(1 + ν) (1 + ik + (3− 4ν) (1− ik))
f ′ (x, t) .

Introducing the notation
Γ (x, t) = Φ+ (x, t)− gΦ− (x, t) , (3.9)

the Volterra integral equation (3.8) takes the form

(I − L) Γ (x, t) = f0 (x, t) . (3.10)

Based on (1.3), the integral equation (3.10) reduces to the ordinary differential equation of second
order

Γ̈ (x, t) + γα (t) Γ̇ (x, t) = A (x, t) (3.11)

with the following initial conditions{
Γ (x, t0) = Ef0 (x, t0) ,

Γ̇ (x, t0) = Eḟ0 (x, t0)− γE2ϕ (t0) f0 (x, t0) ,
(3.12)

where α (t) ≡ 1 + Eϕ (t), A (x, t) ≡ E
[
f̈0 (x, t) + γḟ0 (x, t)

]
.

A solution of equations (3.11) and (3.12) is represented in the form

Γ (x, t) = C (x)

t∫
t0

δ (τ) dτ +

t∫
t0

δ (τ)

( τ∫
t0

A (x, s) ds

δ (s)

)
dτ + C1 (x) , (3.13)

where

C (x) = Eḟ0 (x, t0)− γE2ϕ (t0) f0 (x, t0) , C1 (x) = Ef0 (x, t0) ,

δ (t) = exp

{
− γ

t∫
t0

α (τ) dτ

}
.

Respectively, from (3.9) we obtain the following problem of linear conjugation:

Φ+ (x, t) = gΦ− (x, t) + Γ (x, t) , (3.14)

where Γ (x, t) is defined by equality (3.13).
Introducing the constant α defined by the equality

tgπα = k
1− 2ν

2 (1− ν)
0 < α <

1

2
, we get g = −e2πiα.

Any solution of the homogeneous problem will be [10]

χ0 (z) = (z − a)
− 1

2−α(b− z)−
1
2+α.

Finally, a general solution of problem (3.14) takes the form

Φ (z, t) =
χ0 (z)

2πi

b∫
a

Γ (x, t) dx

χ+
0 (x) (x− z)

+ χ0 (z) C̃ (t), (3.15)

where the function C̃(t) to be determined.
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Under the expression (z − a)
− 1

2−α(b− z)−
1
2+α we mean a branch which is holomorphic on the

segment [a, b] and takes a real positive value (x− a)
1
2+α(b− x)

1
2−α on the upper boundary of that

segment. This branch is characterized by the fact that

lim
z→∞

(z − a)
− 1

2−α(b− z)−
1
2+α

z
= −ieπiα.

C̃(t) can be defined from the following formula:

lim
z→∞

zΦ (z, t) =
−T0 (t) + iP0 (t)

2π
=
iP0 (t) (1 + ik)

2π
,

whence by virtue of (3.15), we get C̃ (t) =
P0 (t) (1 + ik) eπiα

2π
.

Finally,

Φ (z, t) =
χ0 (z)

2πi

b∫
a

Γ (x, t) dx

χ+
0 (x) (x− z)

+ χ0 (z)
P0 (t) (1 + ik) eπiα

2π
.

It can be easily verified that all the conditions of the problem will be satisfied if Γ (x, t) satisfies
Hölder’s condition condition (H) with respect to the variable x on the segment [a, b].

Since
P (x, t) + iT (x, t) = P (x, t) (1 + ik) = Φ+ (x, t)− Φ− (x, t) ,

therefore the pressure under the punch is calculated by the formula

P (x, t) =
χ0 (x)

πi

b∫
a

Γ (y, t) dy

χ+
0 (y) (y − x)

+ χ0 (x)
2P0 (t) (1 + ik) eπiα

2π
.

For k = 0 (α = 0), we obtain a solution corresponding to the case without friction.
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A MEASURE ZERO SET IN THE PLANE WITH ABSOLUTELY

NONMEASURABLE LINEAR SECTIONS

ALEXANDER KHARAZISHVILI

Abstract. It is proved that there exists a translation invariant extension µ of the two-dimensional
Lebesgue measure λ2 on the plane R2 such that µ is metrically isomorphic to λ2 and all linear

sections of some µ-measure zero set are absolutely nonmeasurable.

Throughout this paper, we use the following fairly standard notation.
X4Y is the symmetric difference of two sets X and Y ;
dom(f) is the domain of a function f ;
card(X) is the cardinality of a set X;
ω is the least infinite ordinal (cardinal) number;
R is the real line equipped with the group of all its translations;
c is the cardinality of the continuum, i.e., c is card(R);
λ is the standard one-dimensional Lebesgue measure on R;
Rn is the Euclidean n-dimensional space equipped with the group of all its translations;
λn is the standard n-dimensional Lebesgue measure on Rn (in particular, λ1 = λ).

As is widely known, if Z is a λ2-measure zero subset of the Euclidean plane R2, then almost all
(with respect to λ) linear sections of Z, parallel to the coordinate axes, i.e., λ-almost all sets of the
form

{y : (x, y) ∈ Z} (x ∈ R),

{x : (x, y) ∈ Z} (y ∈ R),

are of λ-measure zero. This fact is a direct consequence of Fubini’s classical theorem. More generally,
it follows from the same theorem that if l is any straight line in R2, then λ-almost all linear sections
of Z, parallel to l, are of λ-measure zero.

The main goal of the present paper is to show that for a certain translation invariant extension µ
of λ2, which is metrically isomorphic to λ2, the above-mentioned fact fails to be true in a very strong
sense.

For our further purposes, we need some auxiliary notions from the general theory of invariant
(quasi-invariant) measures (see, e.g., [1, 6, 11]).

Let E be an infinite ground set and let G be a group of transformations of E.
A nonzero complete σ-finite measure θ on E is called quasi-invariant with respect to G (in short,

G-quasi-invariant) if the domain of θ is a G-invariant σ-algebra of subsets of E and the family of all
θ-measure zero sets is a G-invariant σ-ideal of subsets of E.

A set X ⊂ E is called almost G-invariant in E if for every transformation g ∈ G one has

card(g(X)4X) < card(E).

Almost G-invariant subsets of E play an important role in many topics of general topology and of
the theory of invariant (quasi-invariant) measures (see, e.g., [1–4,6, 10,11]).

A set Y ⊂ E is called G-absolutely nonmeasurable if for every nonzero σ-finite G-quasi-invariant
measure µ on E one has Y 6∈ dom(µ).

2020 Mathematics Subject Classification. 28A05, 28D05.
Key words and phrases. Invariant (quasi-invariant) measure; Almost invariant set; Measure zero set; Absolutely

nonmeasurable set.
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In other words, Y ⊂ E is G-absolutely nonmeasurable if Y is absolutely nonmeasurable with respect
to the class of all nonzero σ-finite G-quasi-invariant measures on E.

In particular, if E is a group, then one can take as G the group of all left translations of E. In such
a case, identifying E and G, one can speak of E-absolutely nonmeasurable subsets of E.

Lemma 1. Let (G,+) be an uncountable commutative group identified with the group of all its trans-
lations, and let Y be a subset of G.

The following two assertions are equivalent:
(1) there exists a countable family {gj : j ∈ J} of elements of G such that

∪{gj + Y : j ∈ J} = G;

(2) there exists a G-absolutely nonmeasurable set entirely contained in Y .

For a detailed proof of Lemma 1, see [7].
We shall use this lemma in the special case where G is a group, isomorphic to the additive group

of R.
More precisely, let l be any straight line in the plane R2. For l, we may consider the family Gl of all

those translations g of R2 which satisfy g(l) = l. In other words, Gl is the stabilizer of l in the group
of all translations of R2. Also, l is equipped with the isomorphic image µl of λ and µl is invariant
with respect to Gl. But there are many other measures on l which are invariant (or, more generally,
quasi-invariant) under Gl. Let us denote by Ml the class of all nonzero σ-finite Gl-quasi-invariant
measures on l (notice that the domains of such measures are various Gl-invariant σ-algebras of subsets
of l).

According to the general definition presented above, we say that a set Y ⊂ l is Gl-absolutely
nonmeasurable in l if Y is nonmeasurable with respect to each measure from the class Ml.

Using Lemma 1, it is not hard to show the validity of the next auxiliary statement.

Lemma 2. Let l be a straight line in the plane R2 and let X be a set in l such that card(l \X) < c.
Then X contains a Gl-absolutely nonmeasurable subset of l.

Proof. Since card(l \X) < c, there is an element g ∈ Gl such that

(g + (l \X)) ∩ (l \X) = ∅

or, equivalently,

(g +X) ∪X = l.

Now, taking into account Lemma 1, we conclude that X contains some Gl-absolutely nonmeasurable
set. �

Lemma 3. There exists a set Z ⊂ R2 which satisfies the following three conditions:
(1) Z is almost R2-invariant, i.e., card((h+ Z)4Z) < c for every h ∈ R2;
(2) the inner λ2-measure of the set Z is equal to zero;
(3) for any straight line l in R2, the set l \ Z has cardinality strictly less than c.

Proof. We follow the argument used in [5].
Let α be the least ordinal number of cardinality c. We introduce the following notation.
{lξ : ξ < α} is the injective family of all straight lines in R2.
{Fξ : ξ < α} is the family of all closed subsets of R2 having strictly positive λ2-measure.
{Gξ : ξ < α} is a family of groups of translations of R2 such that:
(a) {Gξ : ξ < α} is increasing by the standard inclusion relation;
(b) card(Gξ) ≤ card(ξ) + ω for each ordinal ξ < α;
(c) ∪{Gξ : ξ < α} is the group of all translations of R2.
Further, we construct by transfinite recursion a family {z′ξ : ξ < α} of points of R2.

Suppose that for an ordinal ξ < α, the partial family {z′ζ : ζ < ξ} has already been defined. Let us
put

Lξ = Gξ(∪{lζ : ζ < ξ}) ∪Gξ({z′ζ : ζ < ξ}).
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Keeping in mind the fact that λ2(Fξ) > 0, it is not hard to show that there exists a point z′ ∈ Fξ \Lξ.
Then we define z′ξ = z′.

Proceeding in this manner, we obtain the required α-sequence {z′ξ : ξ < α} of points of R2. It
follows from the above construction that the set

Z ′ = ∪{Gξ(z′ξ) : ξ < α}

is almost R2-invariant and λ2-thick in R2. Moreover, it is not difficult to check that

card(Z ′ ∩ l) < c

for every straight line l in R2. These properties of Z ′ imply that the set

Z = R2 \ Z ′

satisfies all conditions (1), (2) and (3) of Lemma 3, so is as required. �

Lemma 4. Let Z be a subset of R2 as in Lemma 3.
There exists a complete translation invariant measure µ on R2 such that:
(1) µ is an extension of λ2;
(2) Z ∈ dom(µ) and µ(Z) = 0;
(3) every µ-measurable set X ⊂ R2 admits a representation in the form

X = (X0 ∪A) \B,
where X0 ∈ dom(λ2) and µ(A) = µ(B) = 0 (in particular, the measures µ and λ2 are metrically
isomorphic).

Proof. Since Z satisfies conditions (1), (2) and (3) of Lemma 3, the required measure µ is obtained
in the standard manner, by applying Marczewski’s method of extending measures (see, e.g., [8,9,11]).
Moreover, slightly modifying the transfinite construction of Z, it can be established that µ is a measure
invariant under the group of all isometric transformations of R2. �

Using the above lemmas, we can prove the following statement.

Theorem 1. For the measure µ indicated in Lemma 4, there exists a set W ⊂ R2 such that:
(1) W ⊂ Z and, consequently, µ(W ) = 0;
(2) for any straight line l in R2, the set l ∩W is Gl-absolutely nonmeasurable.

Let α be the least ordinal number of cardinality c. We again denote by {lξ : ξ < α} the injective
family of all straight lines in R2.

Using the method of transfinite recursion, we construct a disjoint family {Wξ : ξ < α} of sets which
fulfil the following two conditions:

(a) Wξ ⊂ lξ ∩ Z for each ordinal ξ < α;
(b) Wξ is Glξ -absolutely nonmeasurable for each ordinal ξ < α.
Assume that, for an ordinal ξ < α, the partial disjoint family {Wζ : ζ < ξ} of sets has already been

constructed so that
Wζ ⊂ lζ (ζ < ξ).

Take the straight line lξ and consider the set

Pξ = (Z ∩ lξ) \ ∪{lζ : ζ < ξ}.
Since card(lξ \ Z) < c, it is not difficult to verify that

card(lξ \ Pξ) < c.

According to Lemma 2, there exists a set T ⊂ Pξ which is Glξ -absolutely nonmeasurable. We then
define Wξ = T .

Proceeding in this manner, we get the disjoint family of sets {Wξ : ξ < α}. Finally, putting

W = ∪{Wξ : ξ < α},
we obtain the set W satisfying conditions (1) and (2) of Theorem 1.

The next auxiliary statement generalizes Lemma 2 to the case of Rn.
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Lemma 5. Let n ≥ 1 be a natural number and let {Γj : j ∈ J} be a family of affine hyperplanes in
the Euclidean space Rn such that card(J) < c.

Then the set Rn \ ∪{Γj : j ∈ J} contains an Rn-absolutely nonmeasurable subset.

This lemma can be deduced from the general Lemma 1.
Using Lemma 5, we obtain an analog of Theorem 1 for the space Rn and for the Lebesgue mea-

sure λn, where n ≥ 3.

Theorem 2. For any natural number n ≥ 3, there exist a complete measure ν on Rn and a set
V ⊂ Rn such that:

(1) ν extends λn and is invariant under the group of all isometric transformations of Rn;
(2) ν is metrically isomorphic to λn;
(3) ν(V ) = 0;
(4) for every affine hyperplane Γ in Rn, the set V ∩ Γ is absolutely nonmeasurable with respect to

the class of all nonzero σ-finite translation quasi-invariant measures on Γ.

A set U ⊂ Rn is called Rn-negligible in Rn if U satisfies the following two relations:
(i) there exists at least one nonzero σ-finite Rn-quasi-invariant measure θ such that U ∈ dom(θ)

(equivalently, U is not Rn-absolutely nonmeasurable);
(ii) for every σ-finite Rn-quasi-invariant measure θ′ such that U ∈ dom(θ′), the equality θ′(U) = 0

holds true.
Some structural properties of Rn-negligible sets are considered in [4] and [6].
It would be interesting to study the question of whether there exists an Rn-negligible set U ⊂ Rn

such that, for any affine hyperplane Γ in Rn, the set U ∩ Γ is absolutely nonmeasurable with respect
to the class of all nonzero σ-finite translation quasi-invariant measures on Γ.
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DYNAMICS OF 2D SOLITONS IN MEDIA WITH VARIABLE DISPERSION:

SIMULATION AND APPLICATIONS

OLEG KHARSHILADZE1, VASILY BELASHOV2, AND ELENA BELASHOVA3

Abstract. Dynamics of multidimensional solitons in media with variable dispersion is studied nu-
merically. The application of the obtained results to the dynamics of FMS waves in a magnetized

plasma, and the 2-dimensional surface waves on shallow water are discussed.

In this paper we consider the problem of dynamics the multidimensional solitons which are described
by the Kadomtsev–Petviashvili (KP) equation

∂tu+ αu∂xu+ β∂3xu = κ
x∫

−∞

∆⊥udx, (1)

in complex media with the varying in time and/or space dispersive parameter β = β(t, r). This
problem is mainly interesting from the point of view of its evident applications in physics of real
complex media with the dispersion. For example, such situation can have place in the problems of the
propagation of the 2-dimensional (2D) gravity and gravity-capillary waves on the surface of “shallow”
water [5, 7] when β is defined respectively as

β = c0H
2/6

and

β = (c0/6)[H2 − 3σ/ρg]

where H is the depth, ρ is the density, and σ is the coefficient of surface tension of fluid. If H =
H(t, x, y), β also becomes the function of the coordinates and time. Similar situation may have place
on studying of the evolution of the 3D fast magnetosonic (FMS) waves in magnetized plasma [1,6] in
case of the inhomogeneous and/or non-stationary plasma and magnetic field when β is a function of
the Alfv’en velocity vA = f [B(t, r), n(t, r)] and angle θ = (k ̂B):

β = vA(c2/2ω2
0i)(cot2 θ −m/M)

where m and M are the masses of electron and ion, respectively. It is well known [8] that the
1D solutions of the Korteweg-de Vries (KdV ) equation (equation (1) with κ = 0) with β = const in
dependence on value of β are divided into two classes: at |β| < u0(0, x)l/12 (l is the characteristic wave
length) they have soliton character, in an opposite case they are the wave packets with asymptotes
being proportional to the derivative of the Airy function [7,8]. In these cases, the KdV equation can be
integrated by the inverse scattering transform (IST) method [5,7]. But, if β = β(x, t) it is impossible
principally, and it is necessary to resort to a numerical simulation. Similar situation has place for the
multidimensional KP equation: in case β = β(t, r) the dispersive term becomes quasi-linear and the
model being not exactly integrable [7].

Here, the problem of study of structure and evolution of the nonlinear waves described by the KP
equation with β = β(t, r) is considered distracting from a specific type of the propagation medium.
The numerical experiments were conducted for several model types of function β when at t < tcr
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β = β0 = const, and at t ≥ tcr

1) β(x) =

{
β, x ≤ a;

β0 + c, x > a;
(2)

2) β(x, t) =

{
β0, x ≤ a;

β0 + nc, n = (t− tcr)/τ = 1, 2 . . . ; x > a
(3)

3) β(t) = β0(1 + k0β sinωt), β = (βmax − βmin)/2, (4)

0 < k0 < l, π/2τ < ω < 2π/τ,

a and c are constants. In terms of the propagation of the waves on shallow water that means respec-
tively, that after reaching of time tcr: 1) sharp “break of bottom”; 2) gradual “change of a height” of
a segment of bottom; and 3) the “oscillations of bottom” with time take place.

In the first series of numerical experiments we investigated the evolution of initial pulse in case when
at tcr the spasmodic change of β = β(t, x, y) has a place behind soliton [“negative” step when c < 0
in (2), (3)]. At this, the dependence of spatial structure of solution on parameter a was studied. The
obtained results (see Figure 1) showed that in all cases the evolution leads to the formation of waving
tail which is not connected with soliton going away and caused only by local influence of sudden change
of the “relief” β(t, x, y). Consequently, the formation of oscillatory structure is connected not so much
with decreasing of a role of the dispersion effects behind soliton as with the spasmodic changing of β
in space.

 

Figure 1. Evolution of a 2D soliton of equation (1) for the dispersion change law
(3) at a = 5.0, c = −0.0038 for t = 0.6.

In the next series of simulations we considered a case when the sudden change of β takes place
directly under or in front of an initial pulse (“negative” step). An example of the results is shown
in Figure 2. One can see that for such character of the “relief” the disturbance caused by sudden
change of β has also local character, i.e. it doesn’t propagate together with the going away soliton.
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Figure 2. Evolution of a 2D soliton of equation 1 for the dispersion change law (2)
at a = 4.0, c = −0.0038 for t = 0.6.

But, unlike the cases of the first series, the asymptotes of leaving soliton become oscillating, besides,
against a background of the long-wave oscillations of the waving tail we can also see the appearance
of the wave fluctuations. The effects noted can be interpreted as a result of those that for the areas
of the wave surface with different values of local wave number kx the value of the dispersive effects
is different. As a result, the dispersive confusion of the Fourier-harmonics phases takes place in the
(x, y)-region not equally intensity everywhere and, consequently, it counteracts with different extent
of activity to the generation due to nonlinearity of the harmonics with big kx.

In the next series of simulations with β changing with the laws (2) and (3) we considered the cases
of “positive” step (c > 0) being both in front of and behind of initial pulse for the wide range of values
of a. The examples of the most interesting results are shown in Figure 3.

One can see that when “positive” step is far in front of maximum of function u(0, x, y) the soliton
evolution on the initial stage does not differ qualitatively from that for β = const (Figure 3a), but in
the future their character is defined by presence of the step, namely the processes, caused by the same
causes which have been noted for the results of the second series, begin to be developed (Figure 3b).

As we can see, the appreciable change of the soliton structure which can lead to wave falling is
observed owing to intensive generation of the harmonics with big kx in the soliton front region, even
for rather small height of the step. Thus, the disturbance of the propagating 2D soliton has also local
character.

As to equation (4), the simulation for different k0 = const and variable frequency ω showed that for
some values of ω the stationary (locally) standing waves can be formed, in another cases the formation
of the stationary periodical wave structures is possible, and in the intermediate cases a chaotic regime
is usually realized.

In conclusion, we studied propagation of 2D solitons in complex media with variable dispersion,
considering as a concrete example evolution of 2D solitary waves on shallow water. Let us note that
such approach can be useful and effective in the problems of nonlinear dynamics of the FMS waves
and wave beams in a magnetized plasma [1, 5–7], and also in problems of investigation of evolution
and transformation of the internal gravity waves (IGW) and travelling ionospheric disturbances at
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Figure 3. Evolution of a 2D soliton of equation (1) for the dispersion change law
(3) at a = 5.0, c = 0.0038: (a) t = 0.6, (b) t = 0.8.

heights of the ionosphere F -region on fronts of the solar terminator and the solar eclipse spot [2, 4]
and in regions where basic ionosphere characteristics are changed in time and space [3].
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ON THE INFLUENCE OF BOUNDARY CONDITIONS OF RIGID FIXING ON

EIGEN-OSCILLATIONS AND THERMOSTABILITY OF SHELLS OF

REVOLUTION, CLOSE BY THEIR FORM TO CYLINDRICAL ONES, WITH AN

ELASTIC FILLER, UNDER THE ACTION OF PRESSURE AND

TEMPERATURE

SERGO KUKUDZHANOV

Abstract. The influence of boundary conditions of rigid fixing on eigen-oscillations and thermosta-
bility of shells of revolution which by their form are close to cylindrical ones, with an elastic filler,

under the action of external pressure and temperature, is investigated. We consider closed shells of

middle length whose form of midsurface generatrix is defined by a parabolic function. The shells of
positive and negative Gaussian curvature are studied. Formulas and graphs of dependence of the

least frequency and form of wave formation on the type of boundary conditions, external pressure,

temperature, rigidity of an elastic filler, as well as on the amplitude of shell deviation from the
cylinder, are presented. Comparison of the given parameters with the situation when the shell ends

are freely supported, is carried out. The question of thermostability is considered and the formula

for finding critical pressure is given.

In the present paper we investigate the influence of boundary conditions of rigid fixing, temperature,
external pressure and rigidity of an elastic filler on eigen-oscillations and stability of closed shells of
revolution, close by their form to cylindrical ones. We consider a light filler for which the influence of
tangential stresses on the contact surface and inertia forces may be neglected. The shell is assumed
to be thin and elastic. Temperature is uniformly distributed in the shell body. An elastic filler is
modelled by Winkler’s base; its extension upon heating comes out of account. We investigate the
shells of middle length whose form of the midsurface generatrix is defined by a parabolic function. We
consider the shells of positive, as well as of negative Gaussian curvature. Formulas and universal curves
of dependence of the least frequency and critical load on the Gaussian curvature, type of boundary
conditions, temperature, rigidity of an elasic filler, as well as on the amplitude of shell deviation from
the cylinder, are obtained. The question of thermostability is also considered and the formula for
determination of critical pressure is given.

1. We consider the shell whose middle surface is formed by the rotation of square parabola around
the z-axis of the rectangular system of coordinates x, y, z with the origin at the bisecting point of
a segment of the axis of revolution. It is assumed that the radius R of the midsurface cross-section
is defined by the equality R = r + δ0[1 − ξ2(r/`)2], where r is the end-wall cross-section, δ0 is the
maximal deviation from the cylindrical form (for δ0 > 0, the shell is convex and for δ0 < 0, it is
concave), L = 2` is the shell length, ξ = z/r. We consider the shells of middle length [6] and it is
assumed that (

δ0/r
)2
,
(
δ0/`

)2 � 1. (1)

For the shells of middle length, the forms of oscillation corresponding to the lower frequencies are
accompanied by a weakly-marked wave formation in longitudinal direction as compared with the
circumferential one, therefore the relation

∂2f/∂ξ2 � ∂2f/∂ϕ2 (f = u, v, w), (2)

is valid, where u, v, w are, respectively, meridional, circumferential and radial displacement compo-
nents characterizing oscillation form. Hence, according to Novozhilov’s statement [3], as the basic
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equations of oscillations we can take those corresponding to Vlasov’s semimomentless theory [5]. As
a result of simplification, the system of equations takes the form (due to the adopted assumption,
temperature terms are equal to zero [4])

∂2u

∂ϕ2
= −

[
1 + 2(1 + ν)δ

]∂w
∂ξ

,
∂2v

∂ϕ2
= (1 + 2νδ)

∂w

∂ϕ
,

ε
∂8w

∂ϕ8
+
∂4w

∂ξ4
+ 4δ

∂4w

∂ξ2 ∂ϕ2
+ 4δ2

∂4w

∂ϕ4
− t01

∂6w

∂ξ2 ∂ϕ4
− t02

∂6w

∂ϕ6

− 2s0
∂6w

∂ξ ∂ϕ5
+ γ

∂4w

∂ϕ4
+
ρr2

E

∂2

∂t2

(∂4w
∂ϕ4

)
= 0,

ε = h2/12r2(1− ν2), δ = δ0r/`
2,

ti = T 0
i /Eh (i = 1, 2), s0 = S0/Eh, γ = βr2/Eh,

(3)

where E, ν is an elastic module and the Poison coefficient; T 0
1 and T 0

2 are, respectively, meridional
and circumferential stresses of the initial state, S0 is a shearing stress of the initial state; ρ is density
of the shell material; β is the “bed” coefficient of the elastic filler (characterizing elastic rigidity of the
filler); ϕ is angular coordinate, t is time.

The initial state is assumed to be momentless. With rigid fixing of the shell ends there are no
meridional displacements at the ends. On the basis of a corresponding solution, taking into account
the filler reaction, temperature and also equations (1), we obtain the following approximate expressions

T 0
1 = −qr

{
ν +

δ0
r

[
1 + ν

3
+ 2(1− 2ν2)

(
r/`
)2 − (1− ν2)ξ2

(
r/`
)2]}− αTEh

1− ν
,

T 0
2 = −qr

[
1− 2ν

δ0
r

(r
`

)2]
+ w0β0r, S0 = 0,

(4)

where w0 and β0 are, respectively, deflection and “bed” coefficient of the filler in the initial state; α
is the coefficient of linear extension; T is temperature; q is external pressure (q > 0).

Taking into account relations (1) and (2), we find that

δ0
r

[
1 + ν

3
+ 2(1− 2ν2)

(
r/`
)2 − (1− ν2)ξ2

(
r/`
)2]∂2w

∂ξ2
� ∂2w

∂ϕ2
, ν

∂2w

∂ξ2
� ∂2w

∂ϕ2
.

Therefore expressions (4) after substitution into (3) can be simplified and they take the form

T 0
1 = −αTEh

1− ν
, T 0

2 = −qr
[
1− 2ν

δ0
r

(r
`

)2]
+ w0β0r, T 0

i = σ0
i h (i = 1, 2). (4′)

Bering in mind that in the initial state the shell deformation in a circumferential direction is defined
by the equalities

ε0ϕ =
σ0
2 − νσ0

1

E
+ αT, ε0ϕ = −w0

r
we get

w0 =
(
− σ0

2 + νσ0
1

) r
E
− αTr. (5)

Substituting (5) into (4′), we obtain

T 0
1

Eh
=
σ0
1

E
= − αT

1− ν
,

T 0
2

Eh
=
σ0
2

E
= − qr

Eh

[
1− 2ν

δ0
r

(r
`

)2]
+
β0r

Eh

[(
− σ0

2 + νσ0
1

) r
E
− αTr

]
.

(6)

Introduce the notation

q =
qr

Eh
, δ =

δ0
r

(r
`

)2
, γ0 =

β0r
2

Eh
, g = 1 + γ0.
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Then (6) takes the form

σ0
1

E
= − αT

1− ν
,

σ0
2

E
= −q(1− 2νδ) +

[(
− σ0

2

E
+ ν

σ0
1

E

)
γ0 − αTγ0

]
, (7)

whence we arrive at
σ0
2

E
(1 + γ0) = −q(1− 2νδ) + νγ0

σ0
1

E
− αTγ0. (8)

Substituting into (8) the first expression of (7), we obtain

σ0
2

E
= −

[
q(1− 2νδ) +

αTγ0
1− ν

]
g−1.

Consequently,

−σ
0
1

E
=

αT

1− ν
, −σ

0
2

E
=

[
q(1− 2νδ) +

αTγ0
1− ν

]
g−1. (9)

In view of the fact that R is close to r, in the expressions for stresses (9) we adopted R ≈ r.
As a result, the third equation of system (3) takes the form

ε
∂8w

∂ϕ8
+
∂4w

∂ξ4
+ 4δ

∂4w

∂ξ2 ∂ϕ2
+ 4δ2

∂4w

∂ϕ4
+

[
q(1− 2νδ) +

αTγ0
1− ν

]
g−1

∂6w

∂ϕ6

+
αT

1− ν
∂6w

∂ξ2 ∂ϕ4
+ γ

∂4w

∂ϕ4
+
ρr4

E

∂2

∂ϕ2

(∂4w
∂ϕ4

)
= 0. (10)

A solution of system (3) for harmonic oscillations of closed shells will be sought in the form

u = U(ξ) sinnϕ cosωt,

v = V (ξ) cosnϕ cosωt,

w = W (ξ) sinnϕ cosωt.

From the first two equations of system (3) we obtain

n2U =
[
1− 2(1− ν)δ

]
W ′, (11)

nV =
(
1 + 2νδ

)
W. (12)

Note certain simplifications of boundary conditions of rigid fixing for the shells (for ξ = const)
having the form

u = v = w = w′ξ = 0. (13)

On the basis of equality (12) we find that the fulfilment of the condition w = 0 leads to that of
the condition v = 0, while in view of (11), the fulfilment of the condition w′ξ = 0 leads to that of the
condition u = 0.

Figure 1

Thus if conditions w = w′ξ = 0 (ξ = const) are fulfilled, then all conditions (13) are likewise fulfilled.
Let the shell edges be rigidly fixed. In addition, the solution should satisfy the condition of period-

icity with respect to ϕ and also the following boundary conditions with respect to the coordinate ξ,

w = 0 (ξ = ± `/r), w′ξ = 0 (ξ = ± `/r). (14)
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Figure 2

Solution w of equation (10), as is mentioned above, for harmonic oscillations is sought in the form

w = W sinnϕ cosωt. (15)

From (10) and (15) follows

W (4) −
(

4δn2 − αT

1− ν
n4
)
W (2) − n4

{
ρr2

E
ω2 +

[
q(1− 2νδ) +

αTγ0
1− ν

]
g−1n2

− εn4 − 4δ 2

}
W = 0, δ 2 = δ2 + γ/4. (16)

Figure 3

Figure 4

Assuming W = Ceαξ, we obtain the following characteristic equation

α4 −
(

4δn2 − αT

1− ν
n4
)
α2

− n4
{
ρr2

E
ω2 +

[
q(1− 2νδ) +

αTγ0
1− ν

]
g−1n2 − εn4 − 4δ 2

}
= 0
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which can be written as

p2 − ap− b = 0, Ω = ρr2/E, (17)

p = α2, a = 4δn2 +
αT

1− ν
n4,

b = n4
{

Ωω2 +

[
q(1− 2δν) +

αTγ2
1− ν

]
g−1n2 − εn4 − 4δ 2

}
.

(18)

Proceeding from the condition b > 0, from (17) and (18) we have

α1,2 = ±√p1, α3,4 = ± i
√
−p2,

p1 =
a

2
+

√
a2

4
+ b > 0, p2 =

a

2
−
√
a2

4
+ b < 0. (19)

General solution of equation (16) takes the form

W = A ch k1ξ +B sh k1ξ + C cos k2ξ +D sin k2ξ,

k1 =
√
p1, k2 =

√
−p2.

Satisfying boundary conditions (14), we obtain the system of four homogeneous equations.
Since the determinant of that system is equal to zero, we get

th k1` =
k1
k2

tg k2` = −k2
k1

tg k2`, ` = `/r. (20)

Consequently, this system falls into two independent systems and hence a solution falls into odd
and even functions. To the even function there correspond symmetric with respect to ξ forms of
oscillations, while to the odd function there correspond skew-symmetric ones. Thus we obtain

W = D

(
sin k2ξ −

sin k2`

sh k1`
sh k1ξ

)
,

W = C

(
cos k2ξ −

cos k2`

ch k1`
ch k1ξ

)
.

First, let us consider the case δ = 0, q = γ = T = 0 where p1 = −p2 =
√
b, k1 = k2 = 4

√
b = k.

Equation (20) corresponding to skew-symmetric forms of oscillations takes the form

th k` = tg k`.

To the lower root of that equation there corresponds the value

k = 3, 927 r/`,

where as equation (20) corresponding to the symmetric forms of oscillation take for δ = 0, q = γ =
T = 0 the form

th k` = − tg k`.

To the lower root of that equation there corresponds the value

k = 2, 365 r/` = 0, 75π r/`, (21)

i.e., the lower value k corresponds to the symmetric form of oscillation. Therefore in the sequel we
will consider oscillations with symmetric form of deflection with respect to ξ. Taking into account
that

−p1p2 = b, b = n4(Ωω2 − εn4),

for δ = 0, q = γ = T = 0, we get

k4 = n4(Ωω2 − εn4).

This implies that to the lower root (21) for fixed n there corresponds the least value of eigen-frequency
defined by the expression

Ωω2 = εn4 + (d1λ1)4n−4, d1 = 1, 55, λ1 = πr/2`.
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The least frequency value depending on n is realized for

n20 = d1λ1ε
−1/4. (22)

For n = n0, from (22), for the least frequency of cylindrical shell of middle length with rigidly fixing
ends we obtain the known formula [1]

Ωω2
01 = 2 d21λ

2
1ε

1/2.

Figure 5

Figure 6

For freely supported ends, the least frequency of cylindrical shell is, as is known, defined by the
formula

Ωω2
0 = 2λ21ε

1/2. (23)

Let us turn now to the general case and investigate axially symmetric forms of oscillations corre-
sponding to lower frequencies. Relying on (19), we have

−p2 = p1 − a, a =
(

4δ − αT

1− ν
n2
)
n2.

from which, putting x = `
√
p1, we obtain

−p2` 2 = x2 − β, β = 4n2
δ0
r
− αT

1− ν

( `
r

)2
n4. (24)

Then equation (20) corresponding to symmetric forms of oscillations can be represented as

x thx = −
√
x2 − β tg

√
x2 − β. (25)

On the basis of the first equality of (19), we have p1(p1 − a) = b from which we find that

Ωω2 = εn4 + x2(x2 − β)
(r
`

)4
n−4 + 4δ 2 −

[
q(1− 2νδ) +

αTγ0
1− ν

]
g−1n2. (26)

Consequently, in a general case, the eigen-frequencies ω for the shells under consideration are
defined by formula (26), where x is any root of equation (25). The least frequency ω is obtained by
minimizing the right-hand side of (26) with respect to n, when as x we take the least root of equation
(25) which we denote by xω. On the basis of (24) and (25), it is not difficult to see that xω depends
both on δ0/r, T and on n. Such a minimization is realized by sorting out natural values n in the
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neighbourhood n0 defined by equality (22). Below we present results of our calculations for the shells
with geometric dimensions ` = r, h/r = 10−2, ν = 0, 3 for different values δ0/r (for q = γ = T = 0).
In Figure 1 we can see dependence of xω on δ0/r (curve (1) corresponds to the rigid shell ends fixing;
straight line (0) corresponds to the freely supported ends). Figure 2 presents dependence of nω on
δ0/r ((1) corresponds to rigidly fixing ends and (0) to freely supported ends). In Figure 3 we can see
the curves of dependence of the least frequencies ω2/ω2

0 on δ0/r ((1) is the case of rigidly fixing ends
and (0) for fxreely supported ends [2]), ω2

0 is defined by expression (23).
For ω = 0, from (26) we obtain

q(1− 2vδ) =

[
εn2 + x2(x2 − β)n−6

(r
`

)4
+ 4δ 2n−2

]
g − αTγ0

1− v
. (27)

The least value q is obtained after minimization of the right-hand side of equality (28) depending on
n, when as x we take the least positive root of equation (26) which is denoted by x∗. It is not difficult
to see that on the basis of the value x∗ depends on n∗. Corresponding values x∗, n∗, q∗/q0∗ are critical
and presented depending on δ0/r by the curves (1) in Figures 4, 5, 6 for γ0 = T = 0. In Figure 6, over
the Oy-axis is drawn the dimensionless critical pressure q∗/q0∗ (q0∗ characterizes critical pressure for
freely supported cylindrical shell and is defined by the equality q0∗ = 0, 855(1−ν2)−3/4(h/r)3/2r/L [6]).
Comparing curves 1 in Figures 3, 6, it is not difficult to notice that their behaviour is qualitativly
close: if for δ0 > 0 the values of the least frequency and of critical pressure increase, then for δ0 < 0
they first decrease up to δ0/r ≈ −(0, 03÷ 0, 04) and then increase. According to (27), the formula for
finding critical pressure q∗ has the form

q∗ =
1 + γ0

1− 2νδ

[
εn2∗ + x2∗(x

2
∗ − β)n−6

(
r/`
)4

+ 4δ 2n−2∗

]
− αTγ0

(1− ν)(1− 2νδ)
.

Thus we have obtained formulas for determination of lower frequencies for the shells of revolution
which by their form are close to cylindrical ones, depending on the boundary conditions of rigid fixing,
amplitude of cylinder deviation, rigidity of an elastic filler, external pressure and temperature. The
formula for determination of critical pressure depending on the above-mentioned factors, is also given.
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ON THE VECTOR FIBER SURFACE OF THE SPACE Lm(V n) OF TRIPLET

CONNECTEDNESS

GOCHA TODUA

Abstract. In this paper, we consider the theory of the surface of metric vector fibers for the space
Lm(V n) with triplet connectedness. It is proved that in metric vector fibers there always exists

an internal triplet connectedness. Analogues of Gauss–Weingarten derivation formulas and also

analogues of generalized Gauss, Peterson–Codazzi–Mainardi equations are found.

Let us consider the vector fiber space Lm(V n), where the local coordinates of a point transform
by the law [2]

xi = xl(xk); yα = Aαβ(x)yβ ;

det

∥∥∥∥ ∂xi
∂xk

∥∥∥∥ 6= 0; det ‖Aαβ‖ 6= 0; i, j, k = 1, . . . , n; α, β, γ = 1, . . . ,m. (1)

Assume that the tensor field GAB(A,B,C = 1, 2, . . . , n+m) is given on the space Lm(V n), i.e.

GAB =
∗
XCA
∗
XDBGCD,

where

XAB =

∥∥∥∥∂XA
∂X

B

∥∥∥∥ =

∥∥∥∥∥∥∥∥∥
∂xi

∂xj
∂xi

∂xα

∂xα

∂xi
∂xα

∂xβ

∥∥∥∥∥∥∥∥∥ =

∥∥∥∥∥ xij 0

Aαβky
β Aαβ

∥∥∥∥∥ .
An inverse matrix of the matrix has the form

∗
XAB =

∥∥∥∥∂XA
∂X

B

∥∥∥∥ =

∥∥∥∥∥∥∥∥∥
∂xi

∂xk
∂xi

∂xα

∂xα

∂xi
∂xα

∂xβ

∥∥∥∥∥∥∥∥∥ =

∥∥∥∥∥∥
∗
xij 0

∗
AαβkA

β
γy

γ
∗
Aαβ

∥∥∥∥∥∥ .
Since Gαβ = AαγA

β
δG

γδ, where GβγG
αβ = δαγ and Gβi =

∗
Aγβ
∗
xkiGγk+

∗
Aγβ
∗
AαεiA

ε
ρy
ρGγα, we can use them

to construct the values Γαi as follows: Γαi = GαβGβi.
Furthermore,

GαβGβi = AαγA
β
δG

γδ
∗
Aρβ
∗
xkiGρk +AβγG

γδ
∗
Aωβ
∗
AσεiA

ε
ρy
ρGωσ.

Since Aαγ
∗
Aαβ = δαβ , Aγk

α
∗
Aγε + Aαγ

∗
Aγεix

i
k = 0, −∗xkiAkγkAαγk

∗
Aγε = Aαγ

∗
Aγεi, we observe that the values

Γαi form an object of linear connectedness with the following transformation law

∗
Γαi = Aαγ

∗
xki Γγk −

∗
xkiA

α
γky

γ ,

and the values

gij = Gij − Γαi Gαj − ΓβjGβi + Γαi ΓβjGαβ

2020 Mathematics Subject Classification. 53B05.
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are a double covariant symmetric tensor so that we can construct an object of affine connectedness
Γijk in the following manner

Γijk −
1

2
gip(∇kgpj +∇jgkp −∇pgjk).

Note that the linear connectedness Γαi induces the vertical affine connectedness defined by the
object ∇βΓαi ≡ Γαβi with the following transformation law

Γαβi =
∗
xki
∗
AγβA

α
δ Γδγk −Aαβi.

Structural equations of the space Lm(V n) with triplet connectedness have the form [3,4]:

Dωi = ωk ∧ ω̃ik,

Dθ̃α = θ̃β ∧ ω̃αβ +Rαikω
i ∧ ωk,

Dω̃αβ = ω̃γβ ∧ ω̃αγ +Rαβikω
i ∧ ωk +Rαβiγω

i ∧ θ̃γ ,

Dω̃ij = ω̃kj ∧ ω̃ik +Rijpqω
p ∧ ωq +Rijpγω

p ∧ θ̃γ .

(2)

Assume that a hypersurface N is given on the space Lm(V n)

ωi = M i
aψ

a (3)

and the 1-forms ψa re such that {
Dψa = ψb ∧ ψab ,

Dψab = ψcb ∧ ψac + ψc ∧ ψabc.

Note that

Dθ̃α = θ̃β ∧ ω̃αβ +Rαik ∧ ωk = θ̃β ∧ ω̃αβ +RαikM
i
aψ

a ∧Mk
aψ

a = Rαabψ
a ∧ ψb,

where Rαab = RαikM
i
aM

k
b .

The extension of system (3) is given by{
∇M i

a = M i
abψ

b, ∇M i
ab +M i

cψ
c
ab = M i

abcψ
c,

∇M i
abc + 2M i

(a|d|ψ
d
b)c −M

i
dψ

d
bc = M i

abdψ
d,

where {
M i

[ab] = 0, M i
a[bc] = −RijpqMp

aM
q
bM

j
c ,

M i
ab[cd] = −RipqjM

p
abM

q
cM

j
d .

The values M i
a, M i

ab and M i
abc form a fundamental third-order difference-geometric object of the

surface N.
The normal vector of the hypersurface N at the point T satisfies the equations

gijn
iM i

a = 0, gijn
inj = 1.

A metric tensor of the hypersurface N is written in the form

gab = gijM
i
aM

j
b

and ∇gab = gabcψ
c, where gabc = gijM

i
aM

j
bc + gijM

i
acM

j
b .

The vectors M i
abei and niaei admit representations in the form of a linear combination of vectors of

the reference point {T,Ma, n}:

M i
abei = QabcMc + Labn, (4)

niaei = LbaMb + nan, (5)

where

Qcab = gcdgikM
i
abM

k
d , Lab = gkin

kM i
ab, Lba = −gcbLca, na = gkin

knia. (6)
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We call equations (4) and (5) the Gauss-Weingarten formulas of the hypersurface N. From (6) we
obtain

∇Qcab +M c
ab = Qcabdψd, (7)

∇Lab = Labcψc, (8)

where 
Qcabd = gec...,dgikM

i
abM

k
e + geigikM

i
abdM

k
e + gecgikM

i
abM

k
ed,

Labc = gkin
k
cM

i
ab + gkin

kM i
abc,

gec...,d = −geagbcgabd.
From (7) and (8) it follows that Qcab is the object of affine connectedness and Lab is the tensor.
We call the object Qcab the object of induced affine connectedness of the hypersurface N. It is easy

to prove that the induced affine connectedness and the internal affine connectedness coincide. The
1-forms of this connectedness have the form

ψ̃ab = ψab + Qabcψc.
It is obvious that

Dψa = ψb ∧ ψ̃ab , Dψ̃ab = ψ̃cb ∧ ψ̃ac +Ma
bcdψ

c ∧ ψd,
where

Ma
bcd = Qab[cd] −Qae[cQ

e
|b|d].

The values Ma
bcd form the tensor which we call the curvature tensor of the hypersurface N. By

extending equation (4) we obtain

RijpqM
k
aM

p
bM

q
c =

(
Md
abc − La[bLdc]

)
M i
d −

( k
∇[cL|a|b] −Md

bcLad + La[bnc]
)
ni,

where
k

∇c is the symbol of nonholomorphic covariant differentiation.
From the above equalities we obtain the generalized Gauss equations

RipqM
j
aM

p
bM

q
cM

i
e = M i

abce + La[bLc]d (9)

and the generalized Peterson–Codazzi–Mainardi equations

RkpqrM
k
aM

q
bM

r
c n

p = Md
bcLad −

k

∇[cL|a|b] − La[bnc], (10)

where
Ripqr = qijR

j
pqr, Mabce = gdeM

d
abc.

Equations (9) and (10) establish the connection between the curvature tensor of the space Lm(V n)
and the curvature tensor of the hypersurface N in Lm(V n) [1, 5].
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EXTENSION OPERATORS ON SOBOLEV SPACES WITH DECREASING

INTEGRABILITY

ALEXANDER UKHLOV

Abstract. We study extension operators on Sobolev spaces with decreasing integrability on the
base of set functions associated with the operator norms. Sharp necessary conditions are given in

terms of the generalized measure density condition and in terms of a weak integral equivalence of

the Euclidean metric and an intrinsic metric.

1. Introduction

Let Ω be a domain in the Euclidean space Rn, n ≥ 2. Recall that the operator

E : W 1
p (Ω)→W 1

q (Rn), 1 ≤ q ≤ p ≤ ∞,
is called an extension operator on Sobolev spaces (with decreasing integrability in the case q < p), if
E(f)

∣∣
Ω

= f for any function f ∈W 1
p (Ω) and

‖E‖ = sup
f∈W 1

p (Ω)\{0}

‖E(f) |W 1
q (Rn)‖

‖f |W 1
p (Ω)‖

<∞.

Sobolev extension operators arise in the analysis of PDE (see, for example, [15, 21]) and play an
important role in the Sobolev spaces theory. In the present article we prove the sharp Ahlfors type
necessary generalized (p, q)-measure density condition for extension operators of seminormed Sobolev
spaces: Let there exist a continuous linear extension operator E : L1

p(Ω) → L1
q(Rn), n < q ≤ p < ∞,

then
Φ(B(x, r))p−q|B(x, r) ∩ Ω|q ≥ c0|B(x, r)|p, 0 < r < 1, (1.1)

where Φ is an additive set function associated with the extension operator and a constant c0 =
c0(p, q, n) depends on p, q and n only. In the case p = q the measure density condition was in-
troduced in [9] (see, also [24]) and the study of the case q < p requires the use of set functions
associated with the extension operators [23,28].

It is well known [3, 21] that if Ω ⊂ Rn is a Lipschitz domain, then there exists the bounded
extension operator E : W 1

p (Ω) → W 1
p (Rn), 1 ≤ p ≤ ∞. In [11], the notion of (ε, δ)-domains was

introduced and it was proved that in every (ε, δ)-domain there exists the bounded extension operator
E : W k

p (Ω)→W k
p (Rn), for all k ≥ 1 and p ≥ 1.

The complete description of extension operators of the homogeneous Sobolev space L1
2(Ω), Ω ⊂ R2,

was obtained in [26] in terms of the quasi-hyperbolic (quasiconformal) geometry of domains. Namely,
it was proved that a simply connected domain Ω ⊂ R2 is the L1

2-extension domain iff Ω is an Ahlfors
domain (quasi-disc). In the case of spaces Lkp(Ω), 2 < p < ∞, defined in domains Ω ⊂ R2, the
necessary and sufficient conditions were obtained in [20] and formulated in terms of sub-hyperbolic
metrics. Note that extension operators on Sobolev spaces W k

p (Ω) were intensively studied in the last
decade (see, for example, [4,9,12,13,19]), but the problem of the complete characterization of Sobolev
extension domains in the general case remains still open.

In the case p > n, the necessary conditions on W 1
p -extension domains written in terms of an intrinsic

metric and a measure density were obtained in [24]. Extension operators of Sobolev spaces defined
in domains of Carnot groups E : W 1

p (Ω) → W 1
p (G) were considered in [8] and extensions of Sobolev

spaces on metric measure spaces can be found in [10].
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The results of [9, 24] state that the extension operator

E : W 1
p (Ω)→W 1

p (Rn), 1 ≤ p <∞,

does not exist in Hölder cusp domains Ω ⊂ Rn. In [7], the extension operators with decreasing in-
tegrability from domains with the Hölder cusps were constructed by using the method of reflections.
Later, the more general theory of composition operators on Sobolev spaces with decreasing integrabil-
ity was founded in [22,27]. Using another technique, the extension operators in such type of domains
were considered in [16, 17]. An extension operator from Hölder singular domains with decreasing
smoothness was studied in [2]. The detailed study of extension operators on Sobolev spaces defined
in non-Lipschitz domains is given in [18].

Extension operators with decreasing integrability are considered in [23], where for the first time
was introduced a set function (measure) associated with extension operators and were obtained the
necessary conditions in integral terms. In the present article, we give a sharp necessary condition
of the existence of extension operators on Sobolev spaces with decreasing integrability in capacitary
terms and prove the generalized (p, q)-measure density condition that refines the results of [23] and
generalized [9] in the case n < q < p <∞.

The necessary conditions written in terms of intrinsic metrics are considered also. On this base,
the lower estimates of norms of extension operators are obtained. The norm estimates of extension
operators have applications in the spectral theory of non-linear elliptic operators and give estimates
of Neumann eigenvalues in terms of operator’s norms [5].

2. Set Functions Associated with the Extension Operator

Let Ω be a domain in the Euclidean space Rn, n ≥ 2, then the Sobolev space W 1
p (Ω), 1 ≤ p ≤ ∞,

is defined as a Banach space of locally integrable weakly differentiable functions f : Ω→ R equipped
with the following norm:

‖f |W 1
p (Ω)‖ = ‖f | Lp(Ω)‖+ ‖∇f | Lp(Ω)‖,

where ∇f is the weak gradient of the function f and ‖∇f | Lp(Ω)‖ its norm in the Lebesgue space
Lp(Ω). The homogeneous seminormed Sobolev space L1

p(Ω), 1 ≤ p ≤ ∞, is considered with the
seminorm

‖f | L1
p(Ω)‖ = ‖∇f | Lp(Ω)‖.

We consider the Sobolev spaces as Banach spaces of equivalence classes of functions up to a set of
p-capacity zero [15].

2.1. Set functions and capacity. Let A ⊂ Rn be an open bounded set such that A∩Ω 6= ∅. Denote
by W0(A; Ω) the class of continuous functions f ∈ L1

p(Ω) such that fη belongs to L1
p(A∩Ω)∩C0(A∩Ω)

for all smooth functions η ∈ C∞0 (Ω). We define the set function

Φ(A) = sup
f∈W0(A;Ω)

(
‖E(f) | L1

q(A)‖
‖f | L1

p(A ∩ Ω)‖

)κ
,

1

κ
=

1

q
− 1

p
.

This set function was introduced in [23] in connection with the lower estimates of norms of extension
operators on Sobolev spaces. For readers convenience we give the detailed proof of the following
theorem announced in [23]:

Theorem 2.1. Let there exist a continuous linear extension operator

E : L1
p(Ω)→ L1

q(Rn), 1 ≤ q < p <∞.

Then the function Φ(A) is a bounded monotone countably additive set function defined on open bounded
subsets A ⊂ Rn.
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Proof. Let A1 ⊂ A2 be open subsets of Rn. Then extending functions of C0(A1) by zero, we have
C0(A1) ⊂ C0(A2) and obtain

Φ(A1) = sup
f∈W0(A1;Ω)

(
‖E(f) | L1

q(A1)‖
‖f | L1

p(A1 ∩ Ω)‖

)κ
≤ sup
f∈W0(A1;Ω)

(
‖E(f) | L1

q(A2)‖
‖f | L1

p(A2 ∩ Ω)‖

)κ

≤ sup
f∈W0(A2;Ω)

(
‖E(f) | L1

q(A2)‖
‖f | L1

p(A2 ∩ Ω)‖

)κ
= Φ(A2).

Hence Φ is the monotone set function.
Consider open bounded disjoint sets Ak, k = 1, 2, . . . such that A0 =

⋃∞
k=1Ak. We choose arbitrary

functions fk ∈W0(Ak; Ω) such that

‖E(fk) | L1
q(Ak)‖ ≥

(
Φ(Ak)

(
1− ε

2k

)) 1
κ ‖fk | L1

p(Ak ∩ Ω)‖,

‖fk | L1
p(Ak ∩ Ω)‖p = Φ(Ak)

(
1− ε

2k

)
,

where k = 1, 2, . . . and ε ∈ (0, 1) is a fixed number. Setting gN =
N∑
k=1

fk, we find that

∥∥∥∥∥E(gN )

∣∣∣∣L1
q

(
N⋃
k=1

Ak

)∥∥∥∥∥ ≥
(

N∑
k=1

(
Φ(Ak)

(
1− ε

2k

)) q
κ ‖gN | L1

p(Ak ∩ Ω)‖q
) 1
q

=

(
N∑
k=1

Φ(Ak)
(

1− ε

2k

)) 1
κ
∥∥∥∥∥gN

∣∣∣∣L1
p

((
N⋃
k=1

Ak

)
∩ Ω

)∥∥∥∥∥
≥

(
N∑
k=1

Φ(Ak)− εΦ(A0)

) 1
κ
∥∥∥∥∥gN

∣∣∣∣L1
p

((
N⋃
k=1

Ak

)
∩ Ω

)∥∥∥∥∥ ,
since the sets, where ∇E(fk) do not vanish, are disjoint. By the last inequality, we have

Φ(A0)
1
κ ≥ sup

∥∥∥∥E(gN )

∣∣∣∣L1
q

(⋃N
k=1Ak

)∥∥∥∥∥∥∥∥gN ∣∣∣∣L1
p

((⋃N
k=1Ak

)
∩ Ω

)∥∥∥∥ ≥
(

N∑
k=1

Φ(Ak)− εΦ(A0)

) 1
κ

,

where the upper bound is taken over all the above functions gN ∈ W0

((⋃N
k=1Ak

)
; Ω
)

. Since both

N and ε are arbitrary, we have
∞∑
k=1

Φ(Ak) ≤ Φ

( ∞⋃
k=1

Ak

)
.

The inverse inequality can be proved directly. �

Corollary 2.2. Let there exist a continuous linear extension operator

E : L1
p(Ω)→ L1

q(Rn), 1 ≤ q < p <∞.

Then

‖E(f) | L1
q(A)‖ ≤ Φ(A)

1
κ ‖f | L1

p(A ∩ Ω)‖, 1

κ
=

1

q
− 1

p
, (2.1)

for any function f ∈W 1
∞(A) ∩ C0(A).

Recall the notion of a variational p-capacity [6]. The condenser in the domain Ω ⊂ Rn is the
pair (F0, F1) of connected, closed relatively to Ω, sets F0, F1 ⊂ Ω. A continuous function f ∈ L1

p(Ω)
is called an admissible function for the condenser (F0, F1), if the set Fi ∩ Ω is contained in some
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connected component of the set Int{x ∈ Ω : f(x) = i}, i = 0, 1. We call as the p-capacity of the
condenser (F0, F1) relatively to the domain Ω the following quantity:

capp(F0, F1; Ω) = inf ‖f |L1
p(Ω)‖p. (2.2)

Here the greatest lower bond is taken over all functions, admissible for the condenser (F0, F1) ⊂ Ω. If
the condenser has no admissible functions, we put the capacity equal to infinity.

Let F1 = E be a subset of open set U ⊂ Ω and F0 = Ω \ U , then the condenser R = (E,U) =
(Ω \ U,E) is called a ring condenser, or a ring. Note that the infimum in (2.2) can be taken on over
functions f ∈ C∞0 (Ω) such that f = 1 on E and f = 0 on Ω \ U .

Theorem 2.3. Let there exist a continuous linear extension operator

E : L1
p(Ω)→ L1

q(Rn), 1 ≤ q < p <∞.
Then for any compact set E ⊂ (U ∩ Ω) the inequality

cap
1
q
q (E,U) ≤ Φ(U)

1
κ cap

1
p
p (E, (U ∩ Ω)),

1

κ
=

1

q
− 1

p
, (2.3)

holds for any open set U ⊂ Rn.

Proof. Let a smooth function u ∈ L1
p(Ω) be an admissible function for the condenser (E, (U ∩Ω)) ⊂ Ω.

Then, extending u by zero on the set U\Ω we obtain the function E(u) ∈ L1
q(Rn) which is an admissible

function for the condenser (E,U) ⊂ Rn. Hence, by inequality (2.1), we have

cap
1
q
q (E,U) ≤ Φ(U)

1
κ ‖u | L1

p(Ω)‖.
Since u is an arbitrary admissible function for the condenser (E, (U ∩ Ω)) ⊂ Ω, therefore

cap
1
q
q (E,U) ≤ Φ(U)

1
κ cap

1
p
p (E, (U ∩Ω)). �

2.2. Generalized (p, q)-measure density conditions. Consider measure density conditions in do-
mains allowing the extension of operators with decreasing integrability.

Theorem 2.4. Let there exist a continuous linear extension operator

E : L1
p(Ω)→ L1

q(Rn), n < q < p <∞.
Then the domain Ω satisfies the generalized (p, q)-measure density condition

Φ(B(x, r))p−q|B(x, r) ∩ Ω|q ≥ c0|B(x, r)|p, 0 < r < 1,

where x ∈ Ω and a constant c0 = c0(p, q, n) depends on p, q and n only.

Proof. Fix a smooth test function η : Rn → R with supp(η) ⊂ B(0, 1) such that η is equal to 1 in the
neighborhood of 0 ∈ Rn and 0 ≤ η(x) ≤ 1 for all x ∈ Rn. Consider the points x ∈ Ω, y ∈ Ω, and
denote by r := |x− y|. Then the function

f(z) = η

(
x− z
r

)
is a smooth function such that f = 1 in the neighborhood of x ∈ Ω, f(y) = 0 and

|∇f(z)| ≤ C̃

r
for all z ∈ Rn.

Substituting this test function f into inequality (2.1), we obtain

‖f | L1
q(B(x, r)‖ ≤ Φ(B(x, r))

p−q
pq ‖f | L1

p(B(x, r) ∩ Ω)‖

≤ Φ(B(x, r))
p−q
pq
C̃

r
|B(x, r) ∩ Ω|

1
p .

Because q > n, applying the embedding theorem of the space of compact supported Sobolev functions
to the space of Hölder continuous functions (see, for e.g., [15])

L1
q(B(x, r)) ↪→ Hγ(B(x, r)), γ = 1− n/q,
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we have
1

|x− y|1−
n
q

=
|f(x)− f(y)|
|x− y|1−

n
q
≤ ‖f | HγB(x, r)‖ ≤ C‖f | L1

q(B(x, r)‖.

So, using these inequalities, we obtain

(rn)
1
q

r
=

1

|x− y|1−
n
q
≤ Φ(B(x, r))

p−q
pq C

C̃

r
|B(x, r) ∩ Ω|

1
p .

Hence

(rn)
1
q ≤ Φ(B(x, r))

p−q
pq CC̃|B(x, r) ∩ Ω|

1
p ,

and the required inequality is proved. �

To prove the sharpness of condition (1.1), we consider as an example the Hölder singular domain
Ωα, α > 1, [7, 14,18]:

Ωα =
{

(x1, x2) ∈ R2 : 0 < x1 ≤ 1, |x2| < xα1
}
∪B((2, 0),

√
2).

Then |B(0, r) ∩ Ωα| = crα+1 and, substituting it into inequality (1.1), we obtain

Φ(B(0, r))p−qr(α+1)q ≥ Cr2p, 0 < r < 1.

Hence 1 ≤ q < 2p/(α+1) that coincide with the sufficient condition of the existence of (p, q)-extension
operators [7, 14,18]. So, the necessary condition of Theorem 2.4 is sharp.

Recall that a bounded domain Ω ⊂ Rn is called α-integral regular domain [23] if the function

K(x) = lim sup
r→0

|B(x, r)|
|B(x, r) ∩ Ω|

belongs to the Lebesgue spaces Lα(Ω). From Theorem 2.4 follows the assertion which was originally
formulated in [23]:

Theorem 2.5. Let there exist a continuous linear extension operator

E : L1
p(Ω)→ L1

q(Rn), n < q < p <∞.

Then the domain Ω is α-integral regular for α = q/(p− q) and

‖E‖ ≥ c1‖K | Lα(Ω)‖
1
p ,

where a constant c1 = c1(p, q, n) depends on p, q and n only.

Proof. Rewrite inequality (1.1) in the form(
|B(x, r)|
|B(x, r) ∩ Ω|

) q
p−q

≤ 1

cκ1

Φ(B(x, r))

|B(x, r)|
.

Putting r → 0 and using the Lebesgue type differentiability theorem, we have

K(x)α ≤ 1

cκ1
Φ′(x), for almost all x ∈ Ω.

Integrating the last inequality on the closed domain Ω, we find that for any bounded open set Ω ⊂
U ⊂ Rn, ∫

Ω

K(x)α dx ≤ 1

cκ1

∫
Ω

Φ′(x) dx ≤ 1

cκ1

∫
U

Φ′(x) dx =
1

cκ1
Φ(U) ≤ 1

cκ1
‖E‖κ. �
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2.3. Intrinsic metrics in extension domains. Let γ : [a, b] → Ω be a rectifiable curve, then the
length l(γ) can be calculated by the formula

l(γ) =

b∫
a

〈γ̇(t), γ̇(t)〉
1
2 dt.

In the domain Ω ⊂ Rn, we define an intrinsic metric in Alexandrov’s sense [1]:

dΩ(x, y) = inf l(γ(x, y)), x, y ∈ Ω,

where infimum is taken over all rectifiable curves γ ⊂ Ω, joint points x, y ∈ Ω.
We use the following lemma [8,25].

Lemma 2.6. For any points x, y ∈ Ω there exists a function f ∈W 1
∞(Ω) such that:

(1) 0 ≤ f(t) ≤ 1 for any t ∈ Ω, f(x) = 1 and f(y) = 0,
(2) |f(t)− f(s)| ≤ dΩ(t, s)/dΩ(x, y),
(3) supp(f) ⊂ B(x, dΩ(x, y)) := B(x,R),
(4) |∇f | ≤ 1/dΩ(x, y) a.e. in Ω.

Note that the proof of this lemma is based on the test function

f(t) =
dΩ(t,Ωx)

dΩ(x, y)
, t ∈ Ω,

for fixed x, y ∈ Ω, which was introduced in [25] (see, also [8]). The sets Ωx and dΩ(t,Ωx) are defined
for the fixed points x, y ∈ Ω by the formulas

Ωx = {s ∈ Ω : dΩ(x, s) ≥ dΩ(x, y)}
and

dΩ(t,Ωx) = inf{dΩ(t, s) : s ∈ Ωx}.
In the following theorem we give the relation between the intrinsic metric and the Euclidean metric

in (p, q)-extension domains that can be considered as a generalized Ahlfors type metric condition.

Theorem 2.7. Let there exist a continuous linear extension operator

E : L1
p(Ω)→ L1

q(Rn), n < q ≤ p <∞.
Then in the domain Ω, the intrinsic metric is (p, q)-equivalent to the Euclidean metric

dΩ(x, y)1−np ≤ C0Φ(B(x,R))
1
κ |x− y|1−

n
q , R = dΩ(x, y), (2.4)

for all |x− y| < 1, where a constant C0 = C0(p, q, n) depends on p, q and n only.

Proof. Substituting the test function f from Lemma 2.6 into inequality (2.1), we obtain

‖E(f) | L1
q(B(x,R)‖ ≤ Φ(B(x,R))

1
κ · 1

dΩ(x, y)1−np
, (2.5)

because of

‖f | L1
p(Ω)‖ ≤

( ∫
B(x,R)

|∇f(z)|p dz
) 1
p

≤
( ∫
B(x,R)

(
1

R

)p
dz

) 1
p

=
1

R1−np
=

1

dΩ(x, y)1−np
.

In the left-hand side of inequality (2.5) we apply the embedding theorem of the space of compact
supported Sobolev functions to the space of Hölder continuous functions L1

q(B) ↪→ Hγ(B), γ = 1−n/q.
So, we obtain

1

|x− y|1−
n
q

=
|f(x)− f(y)|
|x− y|1−

n
q
≤ ‖f | Hγ(B(x,R))‖ ≤ C0‖f | L1

q(B(x,R)‖.
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Hence
1

|x− y|1−
n
q
≤ C0Φ(B(x,R))

1
κ · 1

dΩ(x, y)1−np
, |x− y| < 1.

The theorem is proved. �

Let x ∈ Ω, we define the value [23]

M(x) = lim sup
r→0

M(x, r) := lim sup
r→0

{
inf

|x−y|≤r

{
m : dΩ(x,y) ≤ m|x− y|

}}
.

Inequality (2.4) leads to the following lower estimate of the extension operator formulated in [23]:

Theorem 2.8. Let there exist a continuous linear extension operator

E : L1
p(Ω)→ L1

q(Rn), n < q ≤ p <∞.
Then

‖E‖ ≥ C0‖M | Lα(Ω)‖1−
n
q , (2.6)

where α = (pq − pn)/(p− q) and a constant C0 = C0(p, q, n) depends on p, q and n only.
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THE UNIFORM SUBSETS OF THE EUCLIDEAN PLANE

MARIAM BERIASHVILI

Abstract. We consider some measurability properties of the uniform subsets of the Euclidean plane

R2. Furthermore, it is shown that there exists an uniform subset of the plane which is simultaneously
a Hamel basis of the plane.

Many years ago, Luzin posed the so-called graph problem, in particular, he asked whether there
exists a function

φ : R→ R

such that the whole plane R2 may be covered by countable isometric copies of the graph of φ.
Let us define the standard terminology which was introduced by Luzin (see, e.g., [7, 9]).
Let e be an arbitrary nonzero vector in the Euclidean plane and ω be the first infinite cardinal

number (i.e., ω = card(N)).

• A set A ⊂ R2 is called uniform in direction e if card(l ∩ A) ≤ 1 for any straight line l ⊂ R2,
parallel to e.

• A set B ⊂ R2 is called finite in direction e if card(l ∩ B) < ω for any straight line l ⊂ R2,
parallel to e.

• A set C ⊂ R2 is called countable in direction e if card(l∩C) ≤ ω for any straight line l ⊂ R2,
parallel to e.

After this definition we can reduce the equivalent formulation of Luzin’s problem:
There exists a countable family of uniform sets, whose union is identical to R2.
The Luzin’s problem has found interesting applications for the mathematicians, in particular, this

topic has a close connection with Sierpinski,s partition of the plane R2. Furthermore, under the
assumption of the Continuum Hypothesis (CH) Sierpinski has solved positively the question (see,
e.g., [8, 9]).

Sierpinski’s Theorem. Assuming Continuum Hypothesis in R2, there exist two subsets A and B
such that

• The set A is uniform with respect to the axis R× 0;
• The set B is uniform with respect to the axis 0×R;
• There exists a countable family {hn : n > ω} of translations of R2, for which we have

∪{hn(A ∪B) : n < ω} = R2.

Note that the converse assertion holds true. In particular, the existence of the sets A and B
satisfying the above-mentioned properties, implies the validity of CH.

The theorem of Sierpinski and the problem of Luzin have found interesting connections with the
measure extension problem. The study of the measurability properties of uniform sets is an essential
topic of our research. In the measure theory, the standard concept of measurability of sets and
functions with respect to a fixed measure µ on a base (ground) set E is well known. We now introduce
the concept of measurability of sets and functions not with respect to a fixed measure , but with respect
to certain classes of measures, which are defined on different σ-algebras of subsets of the base space
E (see [4, 5]).

Let E be a set and let M be a class of measures on E (in general, we do not assume that measures
belonging to M are defined on one and the same σ-algebra of subset of E).
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• We say that a function f : E → R is absolutely (or universally) measurable with respect to
M if f is measurable with respect to all measures from M .

• We say that a function f : E → R is relatively measurable with respect to M if there exists
at least one measure µ from M such that f is µ-measurable.

• We say that a function f : E → R is absolutely nonmeasurable with respect to M if there
exists no measure µ from M such that f is µ-measurable.

Accordingly, we say that a set X ⊂ E is relatively measurable (absolutely measurable, absolutely
nonmeasurable) with respect to M if its characteristic function χX is relatively measurable (absolutely
measurable, absolutely nonmeasurable) with respect to M .

Example 1. There exists µ Π2-invariant extension of the Lebesgue measure λ2 such that all uniform
sets in direction of the Oy-axis are measurable with respect to µ.

Example 2. There exist the A uniform set in direction of the Oy-axis and the B uniform set in
direction of the Ox-axis such that A ∪B is absolutely nonmeasurable with respect to the class of all
Π2-invariant extensions of the two-dimensional Lebesgue measure.

Let M(R2) be a class of all nonzero σ-finite translation invariant measures on R2. A set X ⊂ R2

is called negligible with respect to M(R2) if these two conditions are satisfied for X:

• there exists a measure ν ∈M(R2) such that X ∈ dom(ν);
• for any measure µ ∈M(R2), the relation X ∈ dom(µ) implies the equality µ(X) = 0.

A set X ⊂ R2 is called absolutely negligible with respect to M(R2) if for every measure µ ∈M(R2),
there exists a measure µ′ ∈M(R2) such that the relations

µ′ extends µ, Y ∈ dom(µ′), µ′(Y ) = 0

hold true.
Let us notice that any R2-absolutely negligible set is also R2-negligible, but the converse assertion

fails to be valid.

Example 3. In 1914, Mazurkiewicz presented a transfinite construction to show that there exists
a point subset M of the Euclidean plane R2 such that every straight line in the plane meets M at
exactly two points. After his result it is natural to say that a set Z ⊂ R2 is a Mazurkiewicz subset of
R2 if card(Z ∩ l) = 2 for every straight line l lying in R2. The above definition immediately implies
that for any nonzero vector e ∈ R2, the Mazurkiewicz set Z is finite in direction e. If M ⊂ R2 is
finite in some direction l, then M is negligible with respect to the class M (R2). In particular, every
Mazurkiewicz set is negligible with respect to the same class of measures.

Example 4. By the definition, a Hamel basis for R is any of its bases construed as a vector space
over Q. It is a well-known fact that in the theory ZF+DC, where DC denotes the so-called Axiom of
Dependent Choice, the existence of a Hamel basis implies the existence of a subset of R, nonmeasurable
in the Lebesgue sense. Moreover, every Hamel basis of the space Rn is an absolutely negligible subset
of Rn.

We recall that a subset X of Rn is λn-thick (or λn massive) in Rn if for each λn-measurable set
Z ⊆ Rn with λn(Z) > 0, we have

X ∩ Z 6= ∅.
In other words, X is λn-thick in Rn if and only if the equality

(λn)∗(R
n \X) = 0

is satisfied.

Example 5. In the Rn Euclidian space, there exists the set Y such that: (i) Y is finite in direction
of any e ∈ Rn vector. (ii)There exists a countable family {hn : n > ω} of translations of Rn for which
the intersection of sets (hk(Y ))k ∈ N is λn-thick (massive) set in Rn.
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As is mentioned above, under CH, the Sierpinski theorem yields a positive solution to the Luzin
problem, but in the frame of ZFC, the final result was obtained by Davis (see, e.g., [2]).

Davis Theorem. There exist a function

φ : R→ R

and a countable family (gn)n<ω of motions of the Euclidean plane R2 such that

∪{gn(Γφ) : n < ω} = R2,

where Γφ denotes the graph of φ.

Example 6. The graph of a function φ : R→ R, which yields a positive solution of Luzins problem,
is an absolutely nonmeasurable subset of E = R2 with respect to the class of all nonzero σ-finite
measures on R2 that are invariant under the group of all isometries of R2.

It is shown in the above-presented example that there is a finite set which is simultaneously a Hamel
basis. The proof of this statement can be find in [6]. This fact motivated us to prove the following
theorem.

Theorem. There exists an uniform subset of R2 which is a Hamel basis of R2.
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WEIGHTED MULTILINEAR HARDY AND RELLICH INEQUALITIES

DAVID E. EDMUNDS1 AND ALEXANDER MESKHI2,3

Abstract. Multilinear variants of weighted Rellich inequalities are derived on the real line. Weighted

estimates for multilinear Hardy operators are also discussed.

1. Introduction and Preliminaries

A considerable effort has been made in recent years to establish the (weighted) boundedness of
integral operators in Lebesgue spaces. Such problems have been studied extensively in Harmonic
Analysis, especially in the last two decades (see, e.g., the monograph [9] and references therein). Our
aim is to establish an m− linear weighted Rellich inequality∥∥∥ m∏

j=1

uj

∥∥∥
Lp
w(δ(·))(I)

≤ C
m∏
j=1

∥∥∥u′′j ∥∥∥
Lpj (I)

, I := (a, b), −∞ ≤ a < b ≤ +∞, (1)

with a certain positive constant c, independent of uk ∈ C∞0 (I), k = 1, . . . ,m, where δ(x) is the distance
function on I given by the formula

δ(x) = min{x− a, b− x}, (2)

and p is defined as follows:

1

p
:=

m∑
k=1

1

pk
, 1 < pk <∞, k = 1, . . . ,m. (3)

Throughout the paper, we assume that m is a positive integer, and p is determined by (3). Note that
in this case 0 < p <∞.

Let v be an a.e. positive function (i.e., a weight) on the interval I := (a, b), −∞ ≤ a < b ≤ ∞.
We denote by Lrv(I) (or by Lrv(a, b)), 0 < r < ∞, the Lebesgue space defined by the norm for r ≥ 1
(quasi-norm if 0 < r < 1):

‖g‖Lrv(I) =

( b∫
a

|g(x)|rv(x)dx

)1/r

.

If v ≡ const, then Lrv(I) will be denoted by Lr(I) (or by Lr(a, b)).

We establish (1) by deriving appropriate multilinear weighted Hardy inequalities∥∥∥∥ m∏
j=1

x∫
a

fj(t)dt

∥∥∥∥
Lpv(a,b)

≤ c
m∏
j=1

‖fj‖Lpj (a,b), (4)

∥∥∥∥ m∏
j=1

b∫
x

fj(t)dt

∥∥∥∥
Lpv(a,b)

≤ c
m∏
j=1

‖fj‖Lp(a,b). (5)
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It should be noted that the necessary and sufficient conditions governing the two-weight bilinear Hardy
inequality ( b∫

a

( b∫
a

f

)q( x∫
a

g

)q
w(x)dx

)1/q

≤ C
( b∫
a

fp1w1

)1/p1( b∫
a

gp2w1

)1/p2

,

for non-negative f and g were found in [10] under different conditions on weights for various ranges
of p1, p2 and q, with q > 1.

The Rellich inequality in the linear setting has first appeared in [14]. The papers [2, 4–8] (see also
the monograph [1]) were devoted to this problem, generally speaking, in a higher-dimensional setting.

Here we formulate the following statements which are inherited from [5].

Theorem A (the case n = 1). Suppose that −∞ < a < b ≤ ∞ and let r ∈ (1,∞); put δ(t) =
min {t− a, b− t} . Then for all u ∈ C2

0 (a, b),∫ b

a

|u(t)|r

δ(t)2r
dt ≤

(
r

2r − 1

)r (
r

r − 1

)r ∫ b

a

|u′′(t)|r dt.

Theorem B (the higher-dimensional case). Let Ω be a non-empty, proper open subset of Rn and let
r ∈ (1,∞); suppose that u ∈ C2

0 (Ω). If r = 2, then∫
Ω

|u(x)|2

δM,4(x)4
dx ≤ 16

9

∫
Ω

|∆u(x)|2 dx,

while if r ∈ (1,∞)\{2}, then for some explicit constant K(r, n),∫
Ω

|u(x)|r

δM,2r(x)2r
dx ≤ K(r, n)

∫
Ω

|∆u(x)|r dx.

Here, δM,4 and δM,2r are the mean distance functions obtained by averaging, in a certain sense, the
distance to the boundary of Ω in all possible directions.

2. Results

We have proved the following statements.

Theorem 2.1. Let −∞ < a < b < ∞, I := (a, b), and let w be a weight function on the interval(
0, (b− a)

)
. If

D̃a,b := sup
0<τ<b−a

( b∫
τ

w(x)xmpdx

)1/p

τm−1/p <∞,

then for all uj ∈ C2
0 (I), j = 1, . . . ,m, inequality (1) holds with the constant C given by the formula

C = 41/pD̃a,b

[
1 + 2mp−2

m∏
i=1

(p′i)
p

]1/p

. (6)

The next statement deals with the cases b =∞ and a = −∞, respectively.

Theorem 2.2. Let −∞ < a < ∞. Suppose that I := (a,∞). Let w be a weight function on (0,∞).
If

D̃ := sup
t>0

( ∞∫
t

w(x)xmpdx

)1/p

tm−1/p <∞, (7)

then for all uj ∈ C2
0 (I), j = 1, . . . ,m, inequality (1) holds, where

C = 2m−1/pD̃

m∏
i=1

p′i. (8)
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Theorem 2.3. Let −∞ < b <∞ and I := (−∞, b). Suppose that w is a positive function on (0,∞).
If condition (7) is satisfied, then for all uj ∈ C2

0 (I), j = 1, . . . ,m, inequality (1) holds, where

C = 2m−1/pD̃

m∏
i=1

p′i, (9)

where D̃ is defined by (7).

By applying Theorems 2.1, 2.2 and 2.3, we can easily deduce the following statements.

Corollary 2.4. Let −∞ < a < b < ∞ and I := (a, b). Then for all uj ∈ C2
0 (I), j = 1, . . . ,m, the

inequalty (∫
I

∣∣∣ m∏
j=1

uj(x)
∣∣∣pδ(x)−2mpdx

)1/p

≤ C
m∏
j=1

‖u′′j ‖Lpj (I), (10)

holds, where

C = (2mp− 1)−1/p

[
1 + 2mp−2

m∏
i=1

(p′i)
p

]1/p

.

Corollary 2.5. Let −∞ < a <∞ and let I := (a,∞). Then inequality (10) holds for all uj ∈ C2
0 (I),

j = 1, . . . ,m, where

C = 2m−1/p(2mp− 1)−1/p
m∏
j=1

p′j .

Corollary 2.6. Let −∞ < b < ∞. Suppose that I := (−∞, b). Then inequality (10) holds for all
uj ∈ C2

0 (I), j = 1, . . . ,m, where C is defined by

C = 2m−1/p(2mp− 1)−1/p
m∏
j=1

p′j .

To get the main results of this paper, we obtain the following statements about the weighted
multilinear Hardy inequalities in which by Ha and H ′b are denoted the Hardy-type operators of the
following form:

Haf(x) =
1

x− a

x∫
a

f(t)dt, x ∈ (a, b), −∞ < a < b ≤ ∞;

H ′bf(x) =
1

b− x

b∫
x

f(t)dt; x ∈ (a, b), −∞ ≤ a < b <∞.

Theorem 2.7. Let −∞ < a < b ≤ ∞, v be a weight function on (a, b). Then inequality (4) with a
positive constant c, independent of fj, fj ∈ Lpj (a, b), j = 1, . . . ,m, holds if and only if

Aa,b := sup
a<t<b

( b∫
t

v(x)dx

)1/p(
t− a

)m−1/p

<∞.

Moreover, if c is the best possible constant in (4), then

Aa,b ≤ c ≤ CAa,b,

where

C =


(

2 + 2mp−1
∏m
i=1 ‖Ha‖pLpi (a,b)

)1/p

, if b <∞,

2m−1/p
∏m
j=1 ‖Ha‖Lpi (a,∞), if b =∞.



398 D. E. EDMUNDS AND A. MESKHI

Theorem 2.8. Let −∞ ≤ a < b < ∞, v be a weight function on (a, b). Then inequality (5) with a
positive constant c, independent of fj, fj ∈ Lpj (a, b), j = 1, . . . ,m, holds if and only if

Ba,b := sup
a<t<b

( t∫
a

v(x)dx

)1/p(
b− t

)m−1/p

<∞.

Moreover, if c is the best possible constant in (5), then

Ba,b ≤ c ≤ CBa,b,
where

C =


(

2 + 2mp−1
∏m
i=1 ‖H ′b‖

p
Lpi (a,b)

)1/p

, if a > −∞,
2m−1/p

∏m
j=1 ‖H ′b‖Lpi (−∞,b), if a = −∞.

Historically, in the linear case the two-weight problem for the Hardy operator was solved by B.
Muckenhoupt [13] for the diagonal case, and by J. Bradly [3] and V. Kokilashvili [11] for the off-
diagonal case (see also the monograph [12], Ch.1 and references therein).

Finally, we mention that the results of this note with proofs will appear separately.
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WEIGHTED NORM ESTIMATES FOR ONE-SIDED MULTILINEAR INTEGRAL

OPERATORS

GIORGI IMERLISHVILI1 AND ALEXANDER MESKHI2,3

Abstract. In this note one-sided and two-weight inequalities for one-sided multilinear fractional in-
tegrals are derived. One-weight estimates are based on Welland’s type pointwise estimates which are

also presented. Integral operators studied in this note involve one-sided multi(sub)linear fractional

maximal operators, multilinear Riemann-Liouville and Weyl integral transforms.

In this note one– and two-weight norm inequalities for one-sided multilinear fractional integrals are
presented. One-weight estimates are based on Welland’s type pointwise inequalities which are also
derived. Integral operators involve one-sided multisublinear fractional maximal operators, multilinear
Riemann–Liouville and Weyl integral transforms.

Let fi : R→ R, i = 1, . . . ,m, be measurable functions and let
−→
f := (f1, . . . , fm).

Throughout the note, it will be assumed that p is a constant satisfying the condition

1

p
=

m∑
i=1

1

pi
, (1)

where 1 < pi <∞, i = 1, . . . ,m.
Multilinear fractional integrals were introduced and studied in the papers by L. Grafakos [4], C.

Kenig and E. Stein [7], L. Grafakos and N. Kalton [5]. In particular, these works deal with the operator

Bγ(f, g)(x) =

∫
Rn

f(x+ t)g(x− t)
|t|n−γ

dt, x ∈ Rn,

where γ is a constant parameter satisfying the condition 0 < γ < n.
In the above-mentioned papers it was proved that if 1

q = 1
p −

γ
n , where 1

p = 1
p1

+ 1
p2

, then Bγ is

bounded from Lp1 × Lp2 to Lq.
As a tool to understand Bγ , the operator

Iγ(
−→
f )(x) =

∫
(Rn)m

f1(y1) · · · fm(ym)

(|x− y1|+ · · ·+ |x− ym|)mn−γ
d−→y ,

where x ∈ Rn, γ is a constant satisfying the condition 0 < γ < nm,
−→
f := (f1, . . . , fm), −→y :=

(y1, . . . , ym), was studied, as well. The corresponding multisublinear maximal operator is given by
(see [11]) the formula

Mγ(
−→
f )(x) = sup

Q3x

m∏
i=1

1

|Q|1− γ
mn

∫
Q

|fi(yi)|dyi,

where the supremum is taken over all cubes Q containing x. It can be immediately checked that

Iγ(
−→
f )(x) ≥ cn,γMγ(

−→
f )(x),

where fi ≥ 0, i = 1, . . . ,m and c is a positive constant, depends only on n and γ. If m = 1, then Iγ
will be denoted by Iγ .
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Let 0 < r < ∞ and let w be a weight function (i.e., w be an a.e. positive function) on Rn. We
denote by Lrw(Rn) the class of all measurable functions f on Rn such that

‖f‖Lrw(Rn) :=

(∫
Rn

|f(x)|rw(x)dx

)1/r

<∞.

In 1974, Muckenhoupt and Wheeden [12] showed that the weighted Sobolev-type inequality

||Iγ(f)||Ls
ws

(Rn) ≤ C||f ||Lr
wr

(Rn),

where 1 < r < ∞, 0 < γ < 1/r, 1/s = 1/r − γ/n, holds if and only if w ∈ Ar,s. A locally integrable
non-negative function (weight) w on Rn is said to belong to Ar,s (1 < r, s <∞) if and only if

sup
Q

(
1

|Q|

∫
Q

ws(x)dx

)1/s(
1

|Q|

∫
Q

w−r
′
(x)dx

)1/r′

<∞, 1

r
+

1

r′
= 1,

where the supremum is taken over all n-dimensional cubes Q with sides, parallel to the coordinate
axes.

We say that a vector of weights −→w = (w1, . . . , wm) satisfies the A−→p ,q condition (−→p = (p1, . . . , pm))
if

sup
Q

(
1

|Q|

∫
Q

( m∏
i=1

wi(x)

)q
dx

)1/q m∏
i=1

(
1

|Q|

∫
Q

wi
−p′i(x)dx

)1/p′i

<∞.

Theorem A ([11]). Suppose that 0 < γ < nm and 1 < p1, . . . , pm < ∞ are exponents with 1/m <
p < n/γ and q is the exponent defined by 1/q = 1/p− γ/n. Then the inequality(∫

Rn

(∣∣Iγ(
−→
f )(x)

∣∣( m∏
i=1

wi(x)

))q
dx

)1/q

≤ C
m∏
i=1

(∫
Rn

(
|fi(x)|wi(x)

)pi
dx

)1/pi

holds for every
−→
f ∈ Lp1(wp11 )× · · · × Lpm(wpmm ) if and only if −→w satisfies the A−→p ,q condition.

In [14], the authors derived the following different type one-weighted result.

Theorem B. Let 0 < γ < nm, suppose that fi ∈ Lpiwpi (Rn) with 1 < pi < mn/γ (i = 1, . . . ,m) and

w ∈
m⋂
i=1

Api,qi i.e.,

m∏
i=1

sup
Q

(
1

|Q|

∫
Q

wqi(x)dx

)1/qi( 1

|Q|

∫
Q

w−p
′
i(x)dx

)1/p′i

<∞,

where 1
qi

= 1
pi
− γ

mn . We set 1
q =

∑m
i=1

1
qi
. Then there is a constant C > 0, independent of fi such

that ∣∣∣∣Iγ(−→f )∣∣∣∣Lq
wq

(Rn) ≤ C
m∏
i=1

∣∣∣∣fi∣∣∣∣Lpi
wpi

(Rn).

The one-weight problem for multisublinear maximal functions and multilinear singular integrals was
studied in [8] under the A−→p condition. Various types of Fefferman–Stein multisublinear inequalities
for fractional maximal functions were established in [13] and [6].

We introduce the following one-sided multisublinear fractional maximal functions:

M−α (
−→
f )(x) = sup

h>0

m∏
i=1

1

h1−α/m

x∫
x−h

|fi(yi)|dyi, 0 < α < m,

M+
α (
−→
f )(x) = sup

h>0

m∏
i=1

1

h1−α/m

x+h∫
x

|fi(yi)|dyi, 0 < α < m,
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which play an important role in the study of multilinear variants of the Riemann-Liouville and Weyl
integral transforms

Rα(
−→
f )(x) =

x∫
−∞

· · ·
x∫

−∞

f1(y1) · · · fm(ym)

((x− y1) + · · ·+ (x− ym))m−α
d−→y , 0 < α < m, x ∈ R,

Wα(
−→
f )(x) =

∞∫
x

· · ·
∞∫
x

f1(y1) · · · fm(ym)

((y1 − x) + · · ·+ (ym − x))m−α
d−→y , 0 < α < m, x ∈ R,

respectively.
If m = 1, then the operators Rα, Wα, M−α and M+

α will be denoted by Rα, Wα, M−α and M+
α ,

respectively.
For the linear one-sided fractional integral operators the one-weight problem was solved in [1] (see

also [2] Ch. 2 for related topics). In particular, the following statement holds.

Theorem C. If 0 ≤ α < 1, 1 < p < 1/α (1/α =∞, if α = 0), 1/q = 1/p− α, 1/p+ 1/p′ = 1. Then[ ∞∫
−∞

|T (f)(x)u(x)|qdx
]1/q

≤ C
[ ∞∫

0

|f(x)u(x)|pdx
]1/p

holds.
(a) for T = M−α or T = Rα (α > 0) if and only if u ∈ A−p,q i.e.,[

1

h

a+h∫
a

uq(x)dx

]1/q[
1

h

a∫
a−h

u−p
′
(x)dx

]1/p′
≤ C

for some constant C and all a, h with a ∈ R, h > 0;
(b) for T = M+

α or T = Wα (α > 0) if and only if u ∈ A+
p,q i.e.[

1

h

a∫
a−h

uq(x)dx

]1/q[
1

h

a+h∫
a

u−p
′
(x)dx

]1/p′
≤ C

for some constant C and all a, h with a ∈ R, h > 0.

For the two-weight theory for linear one-sided fractional integral operators under different types of
conditions on weights we refer to the papers [3,9,10] (see also the monograph [2, ch. 2] and references
cited therein).

Now we formulate the main statements of this note.

Welland-type Inequalities

Theorem 1. Let 0 < α < m and 0 < ε < min{α,m − α}. Then there exists a positive constant C
depending only on m, α and ε such that the following pointwise inequality∣∣∣∣Rα(

−→
f )(x)

∣∣∣∣ ≤ C[(M−α−ε(−→f )(x)

)(
M−α+ε(

−→
f )(x)

)] 1
2

holds for all
−→
f := (f1, . . . , fm), where fi, i = 1, . . . ,m, are bounded functions with a compact support.

The similar theorem can be written for the Weyl integral transform.

Theorem 2. Let 0 < α < m and 0 < ε < min{α,m− α}. Then if
−→
f := (f1, . . . , fm),∣∣∣∣Wα(

−→
f )(x)

∣∣∣∣ ≤ C[(M+
α−ε(
−→
f )(x)

)(
M+

α+ε(
−→
f )(x)

)] 1
2

,

where fi, i = 1, . . . ,m, are bounded functions with compact support and C depends only on m,
α and ε.
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One-weighted Inequalities

Theorem 3. Let 0 < α < m, suppose that fi ∈ Lpiwpi (R) with 1 < pi < m/α (i = 1, . . . ,m) and

w ∈
m⋂
i=1

A−pi,qi i.e.,

m∏
i=1

sup
h>0
x∈R

(
1

h

x+h∫
x

wqi(t)dt

)1/qi( 1

h

x∫
x−h

w−p
′
i(t)dt

)1/p′i

<∞,

where 1
qi

= 1
pi
− α

m . We set 1
q =

m∑
i=1

1
qi

. Then there is a constant C > 0, independent of fi such that

‖Rα(
−→
f )‖Lq

wq
(R) ≤ C

m∏
i=1

‖fi‖Lpi
wpi

(R).

Similar theorem for the Weyl integral transform holds.

Theorem 4. Let 0 < α < m, suppose that fi ∈ Lpiwpi (R) with 1 < pi < m/α (i = 1, . . . ,m) and

w ∈
m⋂
i=1

A+
pi,qi i.e.,

m∏
i=1

sup
h>0
x∈R

(
1

h

x∫
x−h

wqi(t)dt

)1/qi( 1

h

x+h∫
x

w−p
′
i(t)dt

)1/p′i

<∞,

where 1
qi

= 1
pi
− α

m . We set 1
q =

m∑
i=1

1
qi

. Then there is a constant C > 0, independent of fi such that

‖Wα(
−→
f )‖Lq

wq
(R) ≤ C

m∏
i=1

‖fi‖Lpi
wpi

(R).

Fefferman–Stein Two-weighted Inequalities

In the two-weighted setting, we proved the following Fefferman-Stein type inequalities:

Theorem 5. Let 0 < α < m and let 1 < min{p1, . . . , pm} ≤ max{p1, . . . , pm} < min{q,m/α}.
Suppose that p is defined by (1). Let vi be weights on R, i = 1, . . . ,m. We set v(x) =

m∏
i=1

v
p/pi
i (x).

Then the inequalities ∥∥∥(M−α (
−→
f )
)
v1/q

∥∥∥
Lq(R)

≤ C
m∏
i=1

∥∥∥fi(M+
α,pi,qvi

)1/q∥∥∥
Lpi (R)

,

∥∥∥(M+
α (
−→
f )
)
v1/q

∥∥∥
Lq(R)

≤ C
m∏
i=1

∥∥∥fi(M−α,pi,qvi)1/q∥∥∥
Lpi (R)

hold, where C is a constant, independent of fi, i = 1, . . . ,m, and

M+
α,pi,qvi(x) = sup

h>0

(
1

h(1−αpi/m)q/p

x+h∫
x

vi(y)dy

)p/pi
,

M−α,pi,qvi(x) = sup
h>0

(
1

h(1−αpi/m)q/p

x∫
x−h

vi(y)dy

)p/pi
.

Corollary 1. Let α, pi, q and m satisfy the conditions of Theorem 5.
If

m∏
i=1

sup
I

(
1

|I|(1−αpi/m)q/p

∫
I

vi(y)dy

)p/pi
<∞,
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then the following trace-type inequalities hold:
(i) ∥∥∥M−α (

−→
f )
∥∥∥
Lqv(R)

≤ C
m∏
i=1

∥∥∥fi∥∥∥
Lpi (R)

,

∥∥∥M+
α (
−→
f )
∥∥∥
Lqv(R)

≤ C
m∏
i=1

∥∥∥fi‖Lpi (R).
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weights for the multilinear Calderón-Zygmund theory. Adv. Math. 220 (2009), no. 4, 1222–1264.
9. M. Lorente, A characterization of two weight norm inequalities for one-sided operators of fractional type. Canad.

J. Math. 49 (1997), no. 5, 1010–1033.

10. F. J. Martin-Reyes, A. de la Torre, Two weight norm inequalities for fractional one-sided maximal operators. Proc.
Amer. Math. Soc. 117 (1993), no. 2, 483–489.

11. K. Moen, Weighted inequalities for multilinear fractional integral operators. Collect. Math. 60 (2009), no. 2,
213–238.

12. B. Muckenhoupt, R. L. Wheeden, Weighted norm inequalities for fractional integrals. Trans. Amer. Math. Soc. 192

(1974), 261–274.
13. G. Pradolini, Weighted inequalities and pointwise estimates for the multilinear fractional integral and maximal

operators. J. Math. Anal. Appl. 367 (2010), no. 2, 640–656.

14. Y. Shi, X. Tao, Weighted Lp boundedness for multilinear fractional integral on product spaces. Anal. Theory Appl.
24 (2008), no. 3, 280–291.

(Received 18.02.2020)

1Faculty of Informatics and Control Systems, Georgian Technical University, 77 Kostava Str., Tbilisi
0171, Georgia

2A. Razmadze Mathematical Institute of I. Javakhishvili Tbilisi State University, 6 Tamarashvili Str.,

Tbilisi 0177, Georgia

3Kutaisi International University, Youth Avenue, Turn 5/7, Kutaisi 4600, Georgia
E-mail address: imerlishvili18@gmail.com

E-mail address: alexander.meskhi@tsu.ge





Transactions of A. Razmadze
Mathematical Institute
Vol. 174 (2020), issue 3, 405–411

THE PUNCH PROBLEM OF THE PLANE THEORY OF VISCOELASTICITY

WITH A FRICTION

GOGI KAPANADZE1,2 AND LIDA GOGOLAURI1

Abstract. The paper considers the problem of pressure of a rigid punch onto a viscoelastic half-
plane in the presence of friction. The problems of the linear theory of viscoelasticity attracted

the attention of many scientists first of all due to the fact that building and composite materials

(concrete, plastic polymers, wood, human fabric, etc.) exhibit significant viscoelastic properties and,
thus, calculations of constructions for strength, with regard for the viscoelastic properties, are now

becoming increasingly important. Thanks to this fact, various methods of calculating the above-
mentioned problems were proposed, one of which is the Kelvin–Voigt differential model on which

the present paper is based.

Using the methods of a complex analysis elaborated in the plane theory of elasticity by
N. I. Muskhelishvili and his followers, the unknown complex potentials, characterizing viscoelas-

tic equilibrium of a half-plane, are constructed effectively and the tangential and normal stresses

under the punch are defined.

Introduction

The theory of viscoelasticity originated in the works by Boltzmann [3] and developed in his works
by Volterra [10] finds applications not only in mechanics of deformable solid bodies, but also in
other branches of mathematical physics. Viscoelasticity combines the properties of materials to be
viscous or elastic during deformation. In addition, elastic bodies and viscous liquids, as is known,
differ significantly in their properties under the deformation; the former after removal of applied loads
return to their undeformed state and the latter (for example, incompressible liquids) are deprived
of this property. Moreover, stresses in an elastic body are connected directly with strains, but in
viscous liquids (with some exception) they are connected with deformation velocities (for details,
see [2,4,5,8,9]. For viscoelastic materials, the ordinary equilibrium equations, the boundary conditions
and compatibility equations written in terms of stresses remain valid for purely elastic bodies under
the condition that the constants E and σ obtained in the equations are replaced by the functions
E(t) and σ(t). Moreover, unlike purely elastic materials (steel, aluminium, quartz) whose behavior
does not deviate much from the linear elasticity, such materials as synthetic polymers, wood, metals,
human fabric, etc., exhibit under high temperatures significant viscoelastic properties.

Of great importance in the development of the theory of viscoelasticity are synthetic materials
worked out at the end of the twentieth century and also their widespread applications in various
fields.

Subsequently, various models of material properties evaluation for viscoelasticity have been elabo-
rated (see [1]).

In the theory of linear viscoelasicity, Hook’s law can be represented either by the Volterra equation
(integral model), or by the dependence where there occur both the deformations and their derivatives
in time (differential model).

In the present work the use is made of the Kelvin–Voigt differential model in which Hook’s law is
of the form [8]

Xx = λθ + 2µexx + λ∗θ̇ + 2µ∗ėxx,

Yy = λθ + 2µeyy + λ∗θ̇ + 2µ∗ėyy, (1)

2020 Mathematics Subject Classification. 45J05, 74B05.
Key words and phrases. The Kelvin–Voigt model; Kolosov–Muskhelishvili’s formulas; Problem of a punch; Boundary

value problem of linear conjugation.
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Xy = µ

(
∂v

∂x
+
∂u

∂y

)
+ µ∗

(
∂v̇

∂x
+
∂u̇

∂y

)
,

where ϑ = exx + eyy = ∂u
∂x + ∂v

∂y , Xx, Yy, Xy, u, v, exx, eyy, exy are the functions of the variables x,

y, t. Under t we will always mean the time parameter and the dots in the expressions θ̇, . . . , u̇ (unlike
dashes) will denote time derivatives t; λ, µ are elastic and λ∗, µ∗ are viscoelasticity constants.

We cite here the certain well-known Kolosov–Muskhelishvili’s formulas which can, as is known, be
attributed to any solid bodies (see [6])

Xx + Yy = 4Re[Φ(z, t)] = 4Re[ϕ′(z, t)],

Yy −Xx + 2iXy = 2[zϕ′′(z, t) + ψ′(z, t)] = 2[zΦ′(z, t) + Ψ(z, t)].
(2)

In the sequel, we will also use the formula following from formulas (2),

Yy − iXy = Φ(z, t) + Φ(z, t) + zΦ′(z, t) + Ψ(z, t). (3)

We assume that the resultant vector (X,Y ) of outer forces applied to the punch is finite, and stresses
and rotation vanish at infinity, thus for large |z|, we have

Φ(z, t) = −X + iY

2πz
+ o

(
1

z

)
; Ψ(z, t) =

X − iY
2πz

+ o

(
1

z

)
. (4)

It can be easily seen that from the correlations (1) and (2), for the function ϑ(z, t) = exx + eyy we
obtain the following differential equation

ϑ̇(z, t) + kϑ(z, t) =
2

λ∗ + µ∗
Re[ϕ′(z, t)],

(
k =

λ+ µ

λ∗ + µ∗

)
,

whose solution is of the form (assuming ϑ(z; 0) = 0)

ϑ(z, t) =
2

λ∗ + µ∗

t∫
0

Re[ϕ′(z, τ)]ek(τ−t)dτ. (5)

Similarly, from the same correlations (1) and (2), for the function γ(z, t) = exx − eyy we have

γ̇(z, t) +mγ(z, t) = − 1

µ∗
Re[zϕ′′(z, t) + ψ′(z, t)],

(
m =

µ

µ∗

)
,

whose solution under zero initial conditions has the form

γ(z, t) = − 1

µ∗

t∫
0

Re [zϕ′′(z, τ) + ψ′(z, τ)]em(τ−t)dτ. (6)

From (5) and (6), we get

2µ∗exx =

t∫
0

Re
[
κ∗ϕ′(z, τ)ek(τ−t) − (zϕ′′(z, τ) + ψ′(z, τ)) em(τ−t)

]
dτ,

2µ∗eyy =

t∫
0

Re
[
κ∗ϕ′(z, τ)ek(τ−t) + (zϕ′′(z, τ) + ψ′(z, τ)) em(τ−t)

]
dτ,

(7)

where

κ∗ =
2µ∗

λ∗ + µ∗
.

Taking into account equalities dx = dz, dx = dz, dy = −idz, dy = idz,, from (7), by integration
with respect to x and y, respectively, we obtain the formula

2µ∗(u+ iv) =

t∫
0

[
κ∗ϕ(z, τ)ek(τ−t) +

(
ϕ(z, τ)− zϕ′(z, τ)− ψ(z, τ)

)
em(τ−t)

]
dτ + 2µ∗(u0 + iv0), (8)

where u0 = u(z, 0), v0 = v(z, 0).
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Formula (8) is an analogue of Kolosov–Muskhelishvili’s formula for the second basic problem of the
plane theory of elasticity ( [6]) for viscoelastic isotropic body.

From formula (8), by differentiation with respect to x, we obtain

2µ∗v′(x, y, t) = Im

[ t∫
0

κ∗ek(τ−t)Φ(z, τ)dτ

]

+Im

[ t∫
0

em(τ−t)
(

Φ(z, τ)− Φ(z, τ)− zΦ′(z, τ)−Ψ(z, τ)
)
dτ

]
+ 2µ∗v′0(x, y, 0). (9)

Statement of the Problem. Let a viscoelastic body occupy a lower half-plane S−. By L we denote
the boundary of that domain (i.e., theOx-axis) and assume that a portion L′ = [−1; 1] comes in contact
with the punch of prescribed base shape and the punch goes into the half-plane by a given force acting
onto the punch and directed vertically downwards. We will also assume that the displacement of the
punch is translatory in the direction, normal to the boundary, in the presence of friction. In this case,
the boundary conditions can be written in the form

X−y (x, t) =αp(x, t), α = const > 0, x ∈ L′;
X−y (x, t) =Y −y (x, t) = 0, x ∈ L′′ = L− L′; (10)

v−(x, t) =f(x, t) + c, x ∈ L′, (c = const),

where f(x, 0) = f(x) is the given function defining the base shape of the punch before pressing into
the half-plane. In (10), by X−y (x, t), . . . , v−(x, t) we have denoted the expressions X−y (x, 0, t), . . . ,

v−(x, 0, t), and the same writing will be retained in the sequel.
The total tangential stress in the case under consideration has the form T0 = αN0, where

N0 =
1∫
−1
N(x, t)dx N(x, t) is a normal stress at the point x ∈ L′, and hence, the resultant vec-

tor of outer forces acting onto the punch (which are assumed to be prescribed) is of the kind
(X;Y ) = (αN0;−N0).

Relying on (3), formula (9) is written as follows:

Im

[
κ∗

t∫
0

ek(τ−t)Φ(z, τ)dτ + 2

t∫
0

em(τ−t)Φ(z, τ)dτ

]

+

t∫
0

em(τ−t)Xy(z, τ)dτ =2µ∗[v′(x, y, t)− v′(x, y, 0)]. (11)

Passing in (11) to the limit as z → x (z ∈ S−), we obtain

Im

[
κ∗

t∫
0

ek(τ−t)Φ−(x, τ)dτ + 2

t∫
0

em(τ−t)Φ−(x, τ)dτ

]

+

t∫
0

em(τ−t)X−y (x, τ)dτ =f1(x, t), (12)

where

f1(x, t) = 2µ∗[f ′(x, t)− f ′(x)].

Differentiating (12) with respect to t and adding the obtained equality with (12), multiplied by m,
we have

Im

[
(m-k)κ∗

t∫
0

ekτΦ−(x, τ)dτ + (κ∗ + 2)ektΦ−(x, t)

]
+ ektX−y (x, t) = f2(x, t), (13)
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where

f2(x, t) = ekt
[
ḟ1(x, t) +mf1(x, t)

]
.

After the differentiation with respect to t, it follows from (13) that

Im
[
(κ∗m+ 2k)Φ−(x, t) + (κ∗ + 2)Φ̇−(x, t)

]
+ Ẋ−y (x, t) + kX−y (x, t) = ḟ2(x, t)e−kt. (14)

Following N. I. Muskhelishvili (see [6]), we extend the function Φ(z, t) to the upper half-plane (i.e.,
S+) so as to continue analytically the values of Φ(z, t) into the lower half-plane through the unloaded
sections (i.e., to L′′)).

In our case, on the basis of the boundary conditions (10) and formula (3), we define Φ(z, t) in S+

as follows:

Φ(z, t) = −Φ∗(z, t)− zΦ′∗(z, t)−Ψ∗(z, t), z ∈ S+, (15)

where Φ∗(z, t) = Φ(z, t); Ψ∗(z, t) = Ψ(z, t).
Taking into account that [Φ∗(z, t)]∗ = Φ(z, t), [Ψ∗(z, t)]∗ = Ψ(z, t), from (15) we have

Φ∗(z, t) = −Φ(z, t)− zΦ′(z, t)−Ψ(z, t). (16)

The obtained in such a way piecewise holomorphic function we denote again by Φ(z, t), and then
to find the function Ψ(z, t) by Φ(z, t), from (16) we get

Ψ(z, t) = −Φ(z, t)− Φ∗(z, t)− zΦ′(z, t) (17)

Thus, the stress and displacement components are expressed in terms of one piecewise holomorphic
function Φ(z, t).

Introducing the value (17) into (3), we have

Yy − iXy = Φ(z, t)− Φ(z, t) + (z − z)Φ′(z, t),

whence

Y −y (x, t)− iX−y (x, t) = Φ−(x, t)− Φ+(x, t), x ∈ L′. (18)

Owing to the fact that X−y = −αY −y (x, t), from (18) we get

X−y (x, t) =
α

1 + iα

[
Φ+(x, t)− Φ−(x, t)

]
(19)

Taking into account equalities Φ−(x, t) = Φ+
∗ (x, t) and Φ+(x, t) = Φ−∗ (x, t) and bearing in mind

that X−y (x, t) = X−y (x, t), from (19) we obtain

(1− iα)Φ−(x, t) + (1 + iα)Φ−∗ (x, t) = (1− iα)Φ+(x, t) + (1 + iα)Φ+
∗ (x, t),

and thus we conclude that the vanishing at infinity function

(1− iα)Φ(z, t) + (1 + iα)Φ∗(z, t)

is holomorphic on the whole plane and, consequently,

Φ(z, t) = −1 + iα

1− iα
Φ∗(z, t)

whence we obtain

Φ−(x, t) = −1 + iα

1− iα
Φ+(x, t); Φ+(x, t) = −1 + iα

1− iα
Φ−(x, t). (20)

On the basis of (20) and (19), we get

X−y (x, t) = −
[ α

1 + iα
Φ−(x, t) +

α

1− iα
Φ−(x, t)

]
= −Re

[ 2α

1 + iα
Φ−(x, t)

]
= −Im

[ 2iα

1 + iα
Φ−(x, t)

]
. (21)
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From (2) and (13), with regard for the equality X−y = −αY −y , we have

Re
[
Φ−(x, 0)

]
= −

X−y (x, 0)

4α
,

Im
[
Φ−(x, 0)

]
= − 1

κ∗ + 2

[
X−y (x, 0)− f2(x, 0)

]
.

(22)

Thus, for Φ−(x, 0) we obtain the formula

Φ−(x, 0) = −
X−y (x, 0)

4α
− i

κ∗ + 2

[
X−y (x, 0)− f2(x, 0)

]
. (23)

Taking into account the fact that

2iα

1 + iα
Φ−(x, 0) =

1

1 + α2

[
2α2Re Φ−(x, 0)− 2α Im Φ−(x, 0)

]
+

i

1 + α2

[
2αRe Φ−(x, 0) + 2α2 Im Φ−(x, 0)

]
,

from (21) follows

X−y (x, 0) = − 2α

1 + α2

[
Re Φ−(x, 0) + α Im Φ−(x, 0)

]
. (24)

Substituting into (24) the values Re Φ−(x, 0) and Im Φ−(x, 0) from (22), after not complicated
calculations, we obtain

X−y (x, 0) = − 4α2f2(x, 0)

κ∗(1 + 2α2) + 2
. (25)

After the appropriate calculations, it follows from (25) and (23) that

Φ−(x, 0) =
f2(x, 0)

κ∗(1 + 2α2) + 2
[α+ i(1 + 2α2)]. (26)

For the tangential and normal stresses under the punch we have

T (x, t) = X−y (x, t) = −2α Im
[ i

1 + iα
Φ−(x, t)

]
,

P (x, t) = Y −y (x, t) = − 1

α
T (x, t) = 2 Im

[ i

1 + iα
Φ−(x, t)

]
,

(27)

respectively.
Thus the problem reduces to finding of the function Φ−(x, t). Relying on (21), from (14) we get

Im
{[

(κ∗ + 2)− 2iα

1 + iα

]
Φ̇−(x, t) +

[
κ∗m+ 2k − 2ikα

1 + iα

]
Φ−(x, t)

}
= e−ktḟ2(x, t).

We write the obtained equation in the form

Im
[
(a+ ib)Φ−(x, t) + (c+ id)Φ−(x, t)

]
= f3(x, t), (28)

where

a = (κ∗ + 2)(1 + α2)− 2α2; c = (κ∗m+ 2k)(1 + α2);

b = −2α; d = −2αk; (29)

f3(x, t) = (1 + α2)e−ktḟ2(x, t)

In view of (20), from (28), after simple transformations, we obtain[
Φ̇+(x, t) +

c− id
a− ib

Φ+(x, t)
]

= − (1 + iα)(a+ ib)

(1− iα)(a− ib)

[
Φ̇−(x, t) +

c+ id

a+ ib
Φ−(x, t)

]
− 2i(1 + iα)

2

(a− ib)(1 + α2)
f3(x, t) (30)
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Considering the piecewise holomorphic function Ω(z, t) defined by the formula

Ω(z, t) =

Φ̇(z, t) + c−id
a−ibΦ(z, t), z ∈ S+,

Φ̇(z, t) + c+id
a+ibΦ(x, t), z ∈ S−,

from (30) we obtain the following boundary value problem of linear conjugation:

Ω+(x, t) = gΩ−(x, t) + F (x, t), (31)

where

g = − (1 + iα)(a+ ib)

(1− iα)(a− ib)
; F (x, t) = − 2i(1 + iα)

2

(a− ib)(1 + α2)
f3(x, t).

Taking into account that on the basis of (29),

(1 + iα)(a+ ib) = (κ∗ + 2 + iακ∗)(1 + α2),

we can write the constant g in the form

g = −1 + iβ0
1− iβ0

, (32)

where

β0 =
ακ∗

κ∗ + 2
.

Bearing in mind that α > 0, κ∗ > 0 and introducing the constant δ defined by the conditions

tg πδ = β0, 0 ≤ δ < 1

2
, (33)

due to (32), the coefficient of problem (31) is written in the form

g = e2πiγ , (34)

where γ = 1
2 + δ.

As a canonical function of problem (31) we can take the function

χ(z) = (1 + z)
1
2+δ(1− z)

1
2−δ,

where under the right-hand side is meant the certain branch which is holomorphic outside of L′, adopts
on the upper side of the segment the positive values and takes at infinity the form

χ(z) = (1 + z)
1
2+δ(1− z)

1
2−δ = −izeπiδ +O(1). (35)

Relying on the above reasoning, we obtain factorization of the coefficient of problem (31) in the
form

g =
χ−(x)

χ+(x)
, x ∈ L′. (36)

Further, the vanishing at infinity solution of problem (31) of the class h0 (for that class, see [7]) is
of the form

Ω(z, t) =
1

2πiχ(z)

1∫
−1

χ+(σ)F (σ, t)

σ − z
dσ +

D0

χ(z)
, (37)

where D0 is the constant defined from the conditions (4) and (35), having the form

D0 =
(1 + iα)N0

2π
eπiδ.

Owing to (33), (34), (36) and (37), we have

Ω−(x, t) =
e−2πiδ

2

[
F (x, t)− 1

πiχ+(x)

1∫
−1

χ+(σ)F (σ, t)

σ − x
dσ

]
− D0e

−2πiδ

χ+(x)
.

Having defined Ω−(x, t), to find Φ−(x, t), we obtain the following differential equation

Φ̇−(x, t) + λΦ−(x, t) = Ω−(x, t), (38)
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where

λ =
c− id
a− ib

= λ1 + iλ2; λ1 =
[κ∗m(1 + α2) + 2k][κ∗(1 + α2) + 2] + 4kα2

[κ∗(1 + α2) + 2]
2

+ 4α2
,

λ2 =
2ακ∗ (m− k) (1 + α2)

[κ∗(1 + α2) + 2]
2

+ 4α2
.

(39)

The solution of equation (38) is represented by the formula

Φ−(x, t) = e−(λ1+iλ2)t

[
Φ−(x, 0) +

t∫
0

e(λ1+iλ2)τΩ−(x, τ)dτ

]
, (40)

where Φ−(x, 0) is of the form (26).
On the basis of the above-obtained results, we can conclude that in our case (i.e., in the case of

pressure of a rigid punch with friction) the tangential and normal stresses defined by formula (27)
have, as is seen from (40), the character of damping oscillations with respect to time t. Also, taking
into account (39), we can conclude that oscillations are absent in the following cases:

(1) for α = 0 (i.e., without friction);
(2) for m = k (i.e., the constants λ, . . . , µ∗ are connected by the relation λ

λ∗ = µ
µ∗ ).
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ON ONE NEUMANN TYPE PROBLEM FOR SECOND ORDER LINEAR

DIFFERENTIAL EQUATIONS

IVAN KIGURADZE

Dedicated to the Blessed Memory of Professor A. Kharadze

Abstract. Optimal in a certain sense conditions guaranteeing the existence of a unique solution of
the differential equation

u′′ = p(t)u + q(t),

satisfying the Neumann type boundary conditions

u′(a) = `1u(a) + c1, u′(b) = `2u(b) + c2,

are established.

On a finite interval [a, b], we consider the differential equation

u′′ = p(t)u+ q(t) (1)

with the boundary conditions

u′(a) = `1u(a) + c1, u′(b) = `2u(b) + c2, (2)

where p, q ∈ [a, b]→ R are Lebesgue integrable functions, ci ∈ R (i = 1, 2),

`1 ≥ 0, `2 ≤ 0.

For `i = 0 (i = 1, 2), the boundary conditions (2) are the Neumann ones. In this case, problem
(1), (2) is studied in detail (see, e.g., [1, 3–5] and the references therein). However, this problem in a
general case remains still insufficiently studied. The present paper is devoted to fill up this gap.

Assume

p+(t) ≡
(
|p(t)|+ p(t)

)/
2, p−(t) ≡

(
|p(t)| − p(t)

)/
2,

P+ =

b∫
a

p+(t) dt, P− =

b∫
a

p−(t) dt.

Theorem 1. Let `1 ≥ 0, `2 ≤ 0,

`1 − `2 + mes
{
t ∈ [a, b] : p(t) 6= 0

}
> 0, (3)

`1 − `2 + P+ ≤ P−, (4)

and there exist a number λ ≥ 1 such that

b∫
a

[p(t)]λ− dt ≤
4

b− a

( π

b− a

)2λ−2
. (5)

Then problem (1), (2) has one and only one solution.

To prove this theorem, we need the following
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Lemma 1. Let `1 ≥ 0, `2 ≤ 0, conditions (3), (4) be fulfilled and the homogeneous problem

u′′ = p(t)u, (10)

u′(a) = `1u(a), u′(b) = `2u(b) (20)

have a nontrivial solution u. Then there exist points t0 ∈ ]a, b[ , t1 ∈ [a, t0[ , and t2 ∈ ]t0, b] such that

u(t0) = 0, u′(t1) = 0, u′(t2) = 0. (6)

Proof. In view of (20), it is obvious that

u(a) 6= 0, u(b) 6= 0. (7)

First, let us show that the solution u in the interval ]a, b[ has at least one zero. Assume the contrary,
i.e., u(t) 6= 0 for a < t < b. Then by virtue of inequality (7), we have

u(t) 6= 0 for a ≤ t ≤ b.

Consequently,

u′′(t)

u(t)
+ p(t) = 0 for almost all t ∈ [a, b]. (8)

Integrating this identity from a to b, and taking into account equality (20), we find

b∫
a

u′
2
(t)

u2(t)
dt = `1 − `2 + P+ − P−,

whence, owing to conditions (2)–(4) and (8), it follows that u′(t) ≡ 0,

p(t) = 0 for almost all t ∈ ]a, b], `1 − `2 > 0,

and either u(a) = 0, or u(b) = 0. But this contradicts condition (7). The obtained contradiction
proves that for some t0 ∈ ]a, b[ the equality

u(t0) = 0 (9)

is fulfilled.
Without loss of generality, we can assume that

u′(t0) > 0. (10)

If `1 = 0, then

u′(t1) = 0, (11)

where t1 = a. Let us show that if `1 > 0, then this equality is fulfilled for some t1 ∈ ]a, t0[ . Assume
the contrary, i.e.,

u′(t) > 0 for a < t ≤ t0.

Then, in view of (9), we have

u(t) < 0 for a ≤ t < t0.

But this is impossible since

u(a) = u′(a)/`1 ≥ 0.

Thus we have proved that for some t1 ∈ [a, t0[ equality (11) is fulfilled.
Analogously we can show that for some t2 ∈ ]t0, b], the equality

u′(t2) = 0

is fulfilled. �
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Lemma 2 (T. Kiguradze [2]). Let for some a0 ∈ [a, b[ and b0 ∈ ]a0, b] the differential equation (10)
have a nontrivial solution u satisfying either the boundary conditions

u′(a0) = 0, u(b0) = 0,

or the boundary conditions

u(a0) = 0, u′(b0) = 0.

Then

(b0 − a0)2λ−1
b0∫
a0

[p(t)]λ− dt >
(π

2

)2λ−2
for λ ≥ 1.

This lemma is a corollary of Theorem 1.3 from [2].

Proof of Theorem 1. Assume that the theorem is not true. Then, owing to the Fredholmicity of
problem (1), (2), the homogeneous problem (10), (20) has a nontrivial solution u.

According to Lemma 1, there exist points t0 ∈ ]a, b[ , t1 ∈ [a, t0[ and t2 ∈ ]t0, b] such that the solution
u satisfies equalities (6). Thus by Lemma 2, we have the inequalities

(t0 − t1)2λ−1
t0∫
t1

[p(t)]λ− dt >
(π

2

)2λ−2
, (t2 − t0)2λ−1

t2∫
t0

[p(t)]λ− dt >
(π

2

)2λ−2
.

Consequently,

[
(t0 − t1)(t2 − t0)

]2λ−1( t0∫
t1

[p(t)]λ− dt

)( t2∫
t0

[p(t)]λ− dt

)
>
(π

2

)4λ−4
.

On the other hand,

(t0 − t1)(t2 − t0) ≤ (t2 − t1)2

4
≤ (b− a)2

4
,( t0∫

t1

[p(t)]λ− dt

)( t2∫
t0

[p(t)]λ− dt

)
≤
( t2∫
t1

[p(t)]λ− dt

)2/
4 ≤

( b∫
a

[p(t)]λ− dt

)2/
4.

Therefore,

1

4

(b− a
2

)4λ−2( b∫
a

[p(s)]λ− ds

)2

>
(π

2

)4λ−4
.

However, this inequality contradicts inequality (5). The obtained contrdiction proves the theorem. �

Remark 1. If `1 ≥ 0 and `2 ≤ 0, then for problem (1), (2) to be uniquely solvable, it is necessary
that inequality (3) is fulfilled. Indeed, if the above-mentioned inequality is violated, then p(t) = 0 for
almost all t ∈ ]a, b[ , `1 = `2 = 0 and, consequently, the homogeneous problem (10), (20) has an infinite
set of solutions.

Remark 2. Examples 1 and 2 below show that conditions (4) and (5) in Theorem 1 are unimprovable
and they cannot be replaced by the conditions

`1 − `2 + P+ < P− + ε, (12)

b∫
a

[p(t)]λ− dt <
4

b− a

(π + ε

b− a

)2λ−2
(13)

no matter how small ε > 0 is.
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Example 1. Let ε be an arbitrary positive constant,

p(t) ≡ −
( 2x

b− a

)2
, `1 =

2x

b− a
tg(x), `2 = − 2x

b− a
tg(x), (14)

and x ∈ ]0, 1[ be so small that

4x

b− a
tg(x) <

4x2

b− a
+ ε.

Then `1 > 0, `2 < 0,

`1 − `2 + P+ =
4x

b− a
tg(x) < P− + ε,

b∫
a

[p(t)]λ− dt = (b− a)
( 2x

b− a

)2λ
< (b− a)

( 2

b− a

)2λ
<

4

b− a

( π

b− a

)2λ−2
.

Consequently, all the conditions of Theorem 1 are fulfilled, except inequality (4), instead of which
inequality (12) holds. Nevertheless, in this case the homogeneous problem (10), (20) has the nontrivial
solution

u(t) ≡ cos
(2x(t− a)

b− a
− x
)
.

Example 2. Let ε ∈ ]0, π4 [ , x ∈ ]0, ε[ ,

p(t) ≡ −
(π + x

b− a

)2
, `1 =

π + x

b− a
tg(x), `2 = 0,

and the number λ ∈ [1,+∞[ be such that

π + x

b− a
<
( 2

b− a

) 1
λ
(π + ε

b− a

)1− 1
λ

.

Then

`1 − `2 + P+ =
π + x

b− a
tg(x) <

π + x

b− a
<

(π + x)2

b− a
= P−,

b∫
a

[p(t)]λ− dt = (b− a)
(π + x

b− a

)2λ
<

4

b− a

(π + ε

b− a

)2λ−2
.

Consequently, all the conditions of Theorem 1 are fulfilled, except inequality (5), instead of which
inequality (13) holds. On the other hand, the homogeneous problem (10), (20) has the nontrivial
solution

u(t) ≡ cos
( (π + x)(t− a)

b− a
− x
)
.

Theorem 2. If `1 ≥ 0, `2 ≤ 0, and

P− <
`1 − `2 + P+

1 + (b− a)(`1 − `2 + P+)
, (15)

then problem (1), (2) has one and only one solution.

Proof. First note that inequality (15) yields the following inequalities

δ = `1 − `2 + P+ − P− > 0, (16)

r = 1− (b− a)(P− + δ−1P2
−) > 0. (17)

Assume that the theorem is not true. Then the homogeneous problem (10), (20) has a nontrivial
solution u. Put

x = min
{
|u(t)| : a ≤ t ≤ b

}
, y =

( b∫
a

u′
2
(t) dt

) 1
2

.
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Then
x2 ≤ u2(t) ≤ x2 + 2(b− a)

1
2 y + (b− a)y2 for a ≤ t ≤ b. (18)

On the other hand, in view of inequality (16), it is obvious that

y > 0. (19)

Integrating both sides of the identity

u′′(t)u(t) = p(t)u2(t) for almost all t ∈ [a, b]

from a to b and taking into account the boundary conditions (20), we obtain

`1u
2(a)− `2u2(b) +

b∫
a

[p(t)]+u
2(t) dt+

b∫
a

u′
2
(t) dt =

b∫
a

[p(t)]−u
2(t) dt.

Thus, by inequality (18), it follows that

(`1 − `2 + P+)x2 + y2 ≤ P−
(
x2 + 2(b− a)

1
2xy + (b− a)y2

)
,

that is, (
δ

1
2x− (b− a)

1
2 δ−

1
2P−y

)2
+ ry2 ≤ 0.

However, this inequality contradicts inequalities (17) and (19). The obtained contradiction proves the
theorem. �

Remark 3. Condition (15) is unimprovable and it cannot be replaced by the condition

P− <
`1 − `2 + P+

1 + (b− a)(`1 − `2 + P+)
+ ε (20)

no matter how small is ε > 0.

Indeed, if

0 < ε <
4

b− a
, 0 < x < ε

1
2 (b− a)

1
2

/
2,

and the function p and numbers `i (i = 1, 2) are defined by equalities (14), then instead of (15)
inequality (20) holds, but nevertheless, the homogeneous problem (10), (20) has the nontrivial solution

u(t) ≡ cos
(2x(t− a)

b− a
− x
)
.
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ON THE BOUNDEDNESS IN GENERALIZED WEIGHTED GRAND LEBESGUE

SPACES OF SOME INTEGRAL OPERATORS ASSOCIATED TO THE

SCHRÖDINGER OPERATOR

VAKHTANG KOKILASHVILI

Abstract. In the present note, in generalized weighted grand Lebesgue spaces on Rd, d ≥ 3, we

consider the boundedness of diffusion semi-group maximal functions, Riesz transforms and their

adjoints, as well as the Littlewood-Paley quadratic functions related to the Schrödinger differential
operator −∆ + V , where the potential V satisfies a reverse Hölder inequality with an exponent,

greather than d/2. The class of weights, more general than that of Muchenhoupt’ one, is used.

1. Introduction

Our note deals with the mapping properties of certain integral operators associated with the
Schrödinger differential operator

L = −∆ + V (x), x ∈ Rd, d ≥ 3,

where ∆ is the Laplasian and V (x) is non-negative, non-identicaly zero and for some q > d
2 satisfies

the reverse Hölder inequality (
1

|B|

∫
B

vq(y)dy

)1/q

≤ c

|B|

∫
B

v(y)dy,

for every ball B ⊂ Rd.
We consider the boundedness problems relating to the Schrödinger integral operators in some

nonstandard Banach function space.
The mapping properties in Lp of several types Schrödinger–Riesz transforms have been studied

in a pioneer work by Z. W. Shen [9], in which he introduced the following critical radius function
associated with the potential V :

ρ(x) = sup

{
r > 0 : r

1
d−q

∫
B(x,r)

≤ 1

}
, x ∈ Rd.

This notion has played an essential role in the extensive study of the boundedness of Schrödinger
integral operators in weighted Lp spaces with weights, larger, in general, than Muchenhoupt’s ones.

Here, we present the definition of generalized weighted grand Lebesgue spaces L
p),φ
v (Rn, w).

Let 1 < p < ∞, φ be a positive non-decreasing function on (0, p − 1) satisfying φ(0+) = 0. The

generalized weighted grand Lebesgue space L
p),φ
v (Rn, w) is defined as the set of all everywhere finite

measurable functions for which

‖f‖
L
p),φ
v (Rn,w)

= sup
0<ε<p−1

(
φ(ε)

∫
Rn

|f(x)|p−εw(x)vε(x)dx

) 1
p−ε

<∞,

where wvε ∈ L1
loc(R

n) for all ε, 0 < ε < p− 1.
Further, we follow the definitions given in [3].
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Definition 1. Let 1 < p <∞. A weight function w ∈ Aloc
p if there exists a constant c > 0 such that(∫

B

w(y)dy

)1/p(∫
B

w−
1
p−1 (y)dy

)
≤ c|B|

for every ball B = B(x, r), where 0 ≤ r ≤ ρ(x), x ∈ Rd.

Definition 2. Given p > 1, the class

Aρp :=
⋃
θ≥0

Aρ,θp ,

where Aρ,θ is defined as the weights w such that(∫
B

w(y)dy

)1/p(∫
B

w−
1
p−1 (y)dy

)1/p′

≤ c|B|
(

1 +
r

ρ(x)

)θ
for all balls B(x, r).

The following proper inclusions

Ap ⊂ Aρp ⊂ Aloc
p

are valid.
In the case for ρ ≡ 1, the function w(x) = 1 + |x|γ , γ > d(p− 1) belongs to Aρp, but it is not in Ap.

Here, we establish the weighted inequalities in L
p),φ
v (Rn, w) for the following Schrödinger operators:

i) Maximal operator of the diffusion semi-group

M∗f(x) = sup
t>0

e−tLf(x);

ii) L- Riesz transform

R = ∇L− 1
2 ,

and its adjoint

R∗ = L− 1
2∇;

iii) L-Littlewood-Paley function

g(f)(x) =

( ∞∫
0

∣∣∣∣ ddte−tL(f)(x)

∣∣∣∣2tdt) 1
2

.

Let T stand for any of the above operators.
Now we present one of the main results of our note.

Theorem 1. Let 1 < p < ∞, w ∈ Aρp and let v ∈ Lp(Rn, w), vγ ∈ Aρp for some γ > 0. Then the

operator T is bounded in L
p),φ
v (Rn, w).

By Tloc we denote the ρ-localization of T :

Tρf(x) = T
(
fχB(x,ρ(x)(x)

)
.

Theorem 2. Let 1 < p < ∞, w ∈ Aρ,locp and let v ∈ Lp(Rn, w), vγ ⊂ Aρ,locp for some γ > 0. Then

the operator Tloc is bounded in L
p),φ
v (Rn, w).

The boundedness problems for the classical versions of the above-mentioned integral operators
when L = −∆ in weighted grand Lebesgue spaces in the framework of Muckenhoupt’s Ap classes were
studied in [4–7] (see also the monograph [8, Chapter 7], and references therein).
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Variable exponent Hölder, Morrey-Campanato and grand spaces. Operator Theory: Advances and Applications,
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TWO-POINT BOUNDARY VALUE PROBLEMS

FOR SINGULAR TWO-DIMENSIONAL LINEAR DIFFERENTIAL SYSTEMS

NINO PARTSVANIA

Abstract. For two-dimensional systems of ordinary linear differential equations with singular co-
efficients, unimprovable in a certain sense conditions are established guaranteeing, respectively, the

Fredholmicity and unique solvability of the Dirichlet and the Nicoletti problems.

On an open interval ]a, b[ , we consider the two-dimensional linear differential system

u′i = pi(t)u3−i + qi(t) (i = 1, 2) (1)

with the Dirichlet boundary conditions

u1(a+) = 0, u1(b−) = 0, (21)

and the Nicoletti boundary conditions

u1(a+) = 0, u2(b−) = 0, (22)

where p1 and q1 : ]a, b[→ R are Lebesgue integrable functions, while the functions p2 and q2 : ]a, b[→ R
are Lebesgue integrable on every closed interval contained in ]a, b[ .

We are mainly interested in the case where the functions p2 and q2 have nonintegrable singularities
at the points a and b, i.e. the case, where

b∫
a

(
|p2(t)|+ |q2(t)|

)
dt = +∞.

System (1) is singular in that sense.
In the case, where p1(t) ≡ 1 and q1(t) ≡ 0, i.e., when system (1) is equivalent to a second order

linear differential equation, the singular problems (1), (21) and (1), (22) are investigated in sufficient
detail (see, [1–6] and the references therein). In the general case the above mentioned problems are
still not well studied. The present paper is devoted exactly to this case.

Theorems 11 and 12 below contain conditions guaranteeing, respectively, the Fredholmicity of the
singular problems (1), (21) and (1), (22). Based on these theorems we have established unimprovable
in a certain sense conditions for the unique solvability of these problems (see, Theorems 21 and 22, and
their corollaries). They are generalizations of some results by T. Kiguradze [4] concerning the unique
solvability of the Dirichlet and the Nicoletti problems for singular second order linear differential
equations.

We use the following notation.

[x]
+

=
|x|+ x

2
, [x]− =

|x| − x
2

;

u(t0+) and u(t0−) are the right and the left limits, respectively, of the function u at the point t0;
L([a, b]) is the space of Lebesgue integrable on [a, b] real functions;
Lloc(]a, b[) and Lloc(]a, b]) are the spaces of real functions which are Lebesgue integrable on every

closed interval contained in ]a, b[ and ]a, b], respectively;
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If p ∈ L([a, b]), then

Ia(p)(t) =

t∫
a

p(s)ds, Ia,b(p)(t) =

t∫
a

p(s)ds

b∫
t

p(s)ds for a ≤ t ≤ b.

A vector-function (u1, u2) : ]a, b[→ R2 is said to be a solution of system (1) if its components
are absolutely continuous on every closed interval contained in ]a, b[ and satisfy system (1) almost
everywhere on ]a, b[ .

A solution of system (1) satisfying the boundary conditions (21) (the boundary conditions (22)) is
said to be a solution of problem (1), (21) (of problem (1), (22)).

We investigate problem (1), (21) in the case where the functions pi and qi (i = 1, 2) satisfy the
conditions

p1 ∈ L([a, b]), q1 ∈ L([a, b]), p2 ∈ Lloc(]a, b[), q2 ∈ Lloc(]a, b[), (3)

p1(t) ≥ 0 for a < t < b, δ =

b∫
a

p1(t)dt > 0. (4)

Along with system (1) we consider the corresponding homogeneous system

u′i = pi(t)u3−i (i = 1, 2). (10)

The following theorem is valid.

Theorem 11. Let along with (3) and (4) the conditions

b∫
a

Ia,b(p1)(t)[p2(t)]−dt < +∞

and
b∫
a

Ia,b(p1)(t)
(
Ia,b(|q1|)(t)[p2(t)]+ + |q2(t)|

)
dt < +∞ (5)

be satisfied. Then for the unique solvability of problem (1), (21) it is necessary and sufficient that the
corresponding homogeneous problem (10), (21) to have only the trivial solution.

Theorem 21. Let there exist a constant λ ≥ 1 and a measurable function p : ]a, b[→ [0,+∞[ such
that along with (3)–(5) the conditions

[p2(t)]− = p(t)p
1− 1

λ
1 (t) for a < t < b,

and
b∫
a

Ia,b(p1)(t)pλ(t)dt ≤
(π
δ

)2λ−2
δ (6)

are satisfied. Then problem (1), (21) has one and only one solution.

Corollary 11. If along with (3)–(5) the condition

b∫
a

Ia,b(p1)(t)[p2(t)]−dt ≤ δ (7)

holds, then problem (1), (21) has one and only one solution.



TWO-POINT BOUNDARY VALUE PROBLEMS 425

Corollary 21. If along with (3)–(5) the conditions

p2(t) ≥ −
(π
δ

)2
p1(t) for a < t < b, (8)

mes
{
t ∈ ]a, b[ : p2(t) > −

(π
δ

)2
p1(t)

}
> 0 (9)

hold, then problem (1), (21) has one and only one solution.

Example 11. If

0 ≤ p1(t) ≤ exp

(
− b− a

(t− a)(b− t)

)
for a < t < b, δ =

b∫
a

p1(t)dt > 0,

− δ

(b− a)(t− a)2(b− t)2
exp

(
b− a

(t− a)(b− t)

)
≤ p2(t) ≤ 0 for a < t < b,

|q2(t)| ≤ `

(t− a)µ(b− t)µ
exp

(
b− a

(t− a)(b− t)

)
for a < t < b,

where ` > 0, µ < 3, then all the conditions of Corollary 11 are fulfilled, and therefore problem (1), (21)
has a unique solution.

The above example shows that the functions p2 and q2 in the conditions of Theorems 11 and 21
may have singularities of arbitrary order at the points a and b.

Remark 11. Inequalities (6) and (7) in Theorem 21 and Corollary 11 are unimprovable and they
cannot be replaced, respectively, by the conditions

b∫
a

Ia,b(p1)(t)pλ(t)dt ≤
(π
δ

)2λ−2
δ + ε

and
b∫
a

Ia,b(p1)(t)[p2(t)]−dt ≤ δ + ε,

no matter how small ε > 0 would be.

Remark 21. Inequalities (8) and (9) in Corollary 21 are unimprovable as well since if along with (4)
the conditions

p2(t) ≡ −
(π
δ

)2
p1(t), qi(t) ≡ 0 (i = 1, 2)

hold, then problem (1), (21) has an infinite set of solutions.

In contrast to problem (1), (21), we investigate problem (1), (22) in the case where instead of (3)
the conditions

p1 ∈ L([a, b]), q1 ∈ L([a, b]), p2 ∈ Lloc(]a, b]), q2 ∈ Lloc(]a, b]) (10)

are satisfied.

Theorem 12. Let along with (4) and (10) the conditions

b∫
a

Ia(p1)(t)[p2(t)]−dt < +∞

and
b∫
a

Ia(p1)(t)
(
Ia(|q1|)(t)[p2(t)]

+
+ |q2(t)|

)
dt < +∞ (11)
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be satisfied. Then for the unique solvability of problem (1), (22) it is necessary and sufficient that the
corresponding homogeneous problem (10), (22) to have only the trivial solution.

Theorem 22. Let there exist a constant λ ≥ 1 and a measurable function p : ]a, b[→ [0,+∞[ such
that along with (4), (10), and (11) the conditions

[p2(t)]− = p(t)p
1− 1

λ
1 (t) for a < t < b,

and
b∫
a

Ia(p1)(t)pλ(t)dt ≤
( π

2δ

)2λ−2
(12)

are satisfied. Then problem (1), (22) has one and only one solution.

Corollary 12. If along with (4), (10), and (11) the condition

b∫
a

Ia(p1)(t)[p2(t)]−dt ≤ 1 (13)

holds, then problem (1), (22) has one and only one solution.

Corollary 22. If along with (4), (10), and (11) the conditions

p2(t) ≥ −
( π

2δ

)2
p1(t) for a < t < b, (14)

mes
{
t ∈ ]a, b[ : p2(t) > −

( π
2δ

)2
p1(t)

}
> 0 (15)

hold, then problem (1), (22) has one and only one solution.

Example 12. If

0 ≤ p1(t) ≤ (t− a)−2 exp

(
− 1

t− a

)
for a < t < b, δ =

b∫
a

p1(t)dt > 0,

− 1

b− a
exp

(
1

(t− a)(b− t)

)
≤ p2(t) ≤ 0, |q2(t)| ≤ `

(t− a)µ
exp

(
1

t− a

)
for a < t < b,

where ` > 0, µ < 1, then all the conditions of Corollary 12 are fulfilled, and therefore problem (1), (22)
has a unique solution.

Remark 12. Inequalities (12) and (13) in Theorem 12 and Corollary 12 are unimprovable and they
cannot be replaced, respectively, by the conditions

b∫
a

Ia(p1)(t)pλ(t)dt ≤
( π

2δ

)2λ−2
+ ε

and
b∫
a

Ia(p1)(t)[p2(t)]−dt ≤ 1 + ε,

no matter how small ε > 0 would be.

Remark 22. Inequalities (14) and (15) in Corollary 22 are unimprovable as well since if along with
(4) the conditions

p2(t) ≡ −
( π

2δ

)2
p1(t), qi(t) ≡ 0 (i = 1, 2)

hold, then problem (1), (22) has an infinite set of solutions.
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ON THE SECONDARY COHOMOLOGY OPERATIONS

SAMSON SANEBLIDZE

Abstract. The new secondary cohomology operations are constructed. These operations together

with the Adams operations are intended to calculate the mod p cohomology algebra of loop spaces.
In particular, the kernel of the loop suspension map is explicitly described.

1. Introduction

Let X be a topological space and H∗(X;Zp) be the cohomology algebra in the coefficients
Zp = Z/pZ where Z is the integers and p is a prime. Given n ≥ 1, let P ∗n(X) ⊂ H∗(X;Zp) be
the subset of elements of finite height

P ∗n(X) = {x ∈ H∗(X;Zp) | xn+1 = 0, n ≥ 1}.
Let P1 : Hm(X;Zp)→ Hpm−p+1(X;Zp) denote the Steenrod cohomology operation. Given n, r ≥ 1,
we construct the maps

ψr,1 : H2m+1(X;Zp)→ H2mpr+1+1(X;Zp)/ ImP1, p > 2, (1.1)

and

ψr,n : Pmn (X)→ H(m(n+1)−2)pr+1(X;Zp)/ ImP1 (m is even when p > 2) (1.2)

in which ψ1,pk−1 = ψk is the Adams secondary cohomology operation for p odd or p = 2 and k > 1

(cf. [1–3]). Note that when n > 1, these maps are linear for n + 1 = pk, k ≥ 1 (e.g., H∗(X;Zp) is a
Hopf algebra). Let ΩX be the (based) loop space on X. Let σ : H∗(X;Zp) → H∗−1(ΩX;Zp) be the
loop suspension map. Theorem 2 (cf. [3]) explicitly describes Kerσ in terms of the operations P1 and
ψ1,n and higher order Bockstein homomorphisms βk associated with the short exact sequence

0→ Zp → Zpk+1 → Zpk → 0.

The calculation of the loop space cohomology algebra H∗(ΩX;Zp) in terms of generators and
relations will appear elsewhere.

2. The Secondary Cohomology Operations ψr,n

The secondary cohomology operations are constructed by using the integral filtered model of a
space X considered in [4].

2.1. The Hirsch filtered models of a space. Given a commutative graded algebra (cga) H, there
are two kinds of Hirsch resolutions

ρa : (RaH, d)→ H and ρ : (RH, d)→ H,

the absolute Hirsch resolution RaH and the minimal Hirsch resolution RH, respectively. The first
RaH is endowed, besides the Steenrod cochain operation E1,1 =^1, the cup-one product, with the
higher order operations Ep,q, p, q ≥ 1, as they usually exist in the cochain complex C∗(X;Z); the
second RH is, in fact, endowed only with the cup-one measuring the non-commutativity of the cup
product · :=^ . In general, the operations Ep,q appear to measure the deviations of the cup-one
product from being the left and right derivations with respect to the cup product. But in RH the
freeness of the multiplicative structure enables us to fix the relationship between the cup and cup-one

2020 Mathematics Subject Classification. 55S20, 55P35, 55N10.
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products by explicit formulas, while the relation between RH and the cochain complex C∗(X;Z) is
fixed via zig-zag Hirsch maps

(RH, dh)
g← (RaH, dh)

f→ C∗(X;Z). (2.1)

In fact, RH = RaH/J for a certain Hirsch ideal J ⊂ RaH. Thus, the Hirsch algebra (RH, dh), being
generated only by the ^1-product, becomes an efficient tool for calculating of the loop cohomology
algebra.

Denote H∗ = H∗(X;Z). Given a prime p, let tZp : RH → RH ⊗ Zp be the standard map. For

z = [c] ∈ H∗(X;Zp) with c ∈ RH ⊗ Zp, let x0 := t−1
Zp

(c). If c ∈ P ∗n(X), then in RH there is the

equality dx1 = λxn+1
0 = 0 mod p, some x1 ∈ RH, and p does not divide λ. Note that the essential

idea can be seen for n = 1 (the case n > 1 is somewhat technically difficult only). Each z ∈ P ∗n
produces an infinite sequence of elements (xm)m≥0 in RH given by the following formulas:

dx2k+1 =
∑

i1+···+in+1=k

(−1)|z| λx2i1 . . . x2in+1 +
∑

i+j=2k−1

x2i+1x2j+1 + px̃2k+1,

dx2k =
∑

i+j=2k−1

(−1)|xi|+1xixj + px̃2k, im, i, j, k ≥ 0.

(The signs are fixed for |z| and n + 1 to be not simultaneously odd above.) In particular, when z is
odd dimensional and n, λ = 1, one gets for k, i, j ≥ 0 :

dxk =
∑

i+j=k−1

xixj + px̃k.

In turn, the sequence (xm)m≥0 by means of the ^1- product induces four kinds of infinite sequences

bi1,i2k,` ∈
{
b1,nk,` , b

n,1
k,` , b

n,n
k,` , b

1,1
k,`

}
in RH for n ≥ 1 (more precisely, one sequence (bk,`)k,`≥1 when n = 1)

with bk,` := b1,1k,` = b1,1`,k (k, l ≥ 2 when n > 1, while k, l ≥ 1 when n = 1), b1,n2i,2j = bn,12i,2j , i, j ≥ 1,

defined by the recursive formulas: b1,n1,1 = −(−1)|z|bn,11,1 for (k, `) = (1, 1), and

db1,n1,1 =

{
2x1 + λx0 ^1 x

n
0 , |z| is odd,

x0 ^1 x
n
0 , |z| is even,

(in the latter case, we, in fact, have b1,n1,1 =
∑

i+j=n−1
xi0(x0 ∪2 x0)xj0),

bn,n1,1 =
∑

i+j=n−1
xi0 b

1,n
1,1 x

j
0, and for k, ` ≥ 1 :

db∗,∗k,` = −(−1)|z| α∗,∗k,` x
∗,∗
k+`−1 + x

(∗)
k−1 ^1 x

(∗)
`−1

+
∑

0≤r<k
0≤m<`

(
(−1)ε1+|z| α∗,∗r,m b

∗,∗
k−r,`−m x

∗,∗
r+m−1 − (−1)ε2

(
x
(∗)
r−1 ^1 x

(∗)
m−1

)
b∗,∗k−r,`−m

)
+ p b̃∗,∗k,` (2.2)

with the convention x−1 ^1 xm = xm ^1 x−1 = −xm, and αs,t := α1,1
s,t = αn,ns,t , α

1,n
s,t = αn,1s,t ; in

particular, for |x| odd:

αs,t =



(
s+t
s

)
, n = 1,(

(s+t)/2
s/2

)
, n > 1 and s, ` are even, mod p,(

(s+t−1)/2
s/2

)
, n > 1 and s is even and t is odd, mod p,

0, n > 1 and s, t are odd, mod p,
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and for |x| even:

αs,t =


(
(s+t)/2
s/2

)
, n ≥ 1 and s, ` are even, mod p,(

(s+t−1)/2
s/2

)
, n ≥ 1 and s is even and t is odd, mod p,

0, n ≥ 1 and s, t are odd, mod p.

Therefore, when |z| is odd and n, λ = 1, formula (2.2) takes the form

dbk,` =

(
k + `

k

)
xk+`−1 + xk−1 ^1 x`−1

−
∑

1≤r<k
1≤m<`

((
r +m

r

)
bk−r,`−m xr+m−1 + (xr−1 ^1 xm−1) bk−r,`−m

)

−
∑

1≤r<k,`

((bk−r,` + bk,`−r)xr−1 − xr−1(bk−r,` + bk,`−r)) + p b̃k,`.

The values of the perturbation h on xq and b∗,∗k,` are, in fact, purely determined by the transgressive

terms yq+1 := hxq|R0H⊕R−1H and c∗,∗k,` := h(b∗,∗k,`)|R0H⊕R−1H , respectively. Namely,

hxq =
∑

iri=q−m, ri≥1
jrj=q+1, rj≥1

0≤m<q

−xm ^1 y
∪2ri
i + y

∪2rj
j + p hx̃q

and denoting γk,` = α∗,∗α0,`0
. . . α∗,∗ks,`s and m[s] = m1 + · · ·+ms,

h
(
b∗,∗k,`

)
=

∑
1≤ki<ki+1

1≤`i<`i+1

− γk,` x∗,∗k0+`0−1
^1 c

∗,∗
k1−k0,`1−`0

^1 · · ·^1 c
∗,∗
k−ks,`−`s

−
∑

k=k[t] ; `=`[t]

c∗,∗k1,`1 ^1 · · ·^1 c
∗,∗
kt,`t

+
∑

1≤r<k
1≤m<`

b∗,∗r,m h
(
b∗,∗k−r,`−m

)
+ c∗,∗k,` + p h

(
b̃∗,∗k,`

)
. (2.3)

Furthermore, by means of bk,`, we define the elements bk,` ∈ RH as follows. Fix the integer k ≥ 1.
Denote bk,k = bk,k and %k,k = 1. If bk,mk has already been constructed for 1 ≤ m < q and %k,qk :=
αk,(q−1)k . . . αk,2k αk,k, let

bk,qk = %k,qkbk,qk − xk−1 ^1 bk,(q−1)k = %k,qk bk,qk

−%k,(q−1)k xk−1^1 bk,(q−1)k − · · · − %k,2k x^1q
k−1 ^1 bk,2k − x^1(q+1)

k−1 ^1 bk,k.

Then

dhbk,qk = %k,qk xk+qk−1 + x
^1(q+1)
k−1 + uk,qk + p b̃k,qk + hbk,qk

= %k,qk xk+qk−1 + x
^1(q+1)
k−1 + wk,qk + %k,qkck,qk, (2.4)

where wk,qk := uk,qk + p b̃k,qk + (hbk,qk − %k,qk ck,qk) and uk,qk is expressed by xi and bs,t with
(s, t) ≤ (k, qk).

a) Let p be odd. Set k = pr and q = p − 1 in (2.4), and define (1.1) for z ∈ H2m+1(X;Zp) and
r ≥ 1 by

ψr,1(z) =
[
t
Zp

(
x^1p
pr−1 + wpr,(p−1)pr

)]
;

b) Let p and m be not odd simultaneously. Set k = 2pr−1 and q = p− 1 in (2.4), and define (1.2)
for z ∈ Pmn (X) and r, n ≥ 1 by

ψr,n(z) =
[
t
Zp

(
x^1p
2pr−1−1 + w2pr−1,2(p−1)pr−1

)]
.
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Theorem 1. For any map f : X → Y, the following diagrams

H2m+1(X;Zp)
ψr,1−−→ H2mpr+1+1(X;Zp)/ ImP1

f∗ ↑ f∗ ↑

H2m+1(Y ;Zp)
ψr,1−−→ H2mpr+1+1(Y ;Zp)/ ImP1

and

Pmn (X)
ψr,n−−−→ H(m(n+1)−2)pr+1(X;Zp)/ ImP1

f∗ ↑ f∗ ↑

Pmn (Y )
ψr,n−−−→ H(m(n+1)−2)pr+1(Y ;Zp)/ ImP1

commute.

Sketch of the proof. Define the cohomology operations on H∗(C∗(X;Zp)) by means of the canonical
operations {Ep,q}p,q≥1 on the cochain complex C∗(X;Zp) ([4]) that agree with ψr,n on H∗(RH, dh)
via zig-zag maps (2.1). �

Let D∗ := H+(X;Zp) · H+(X;Zp) ⊂ H∗(X;Zp) be the decomposables and P(m)
1 denote m-fold

composition P1 ◦ · · · ◦ P1.

Theorem 2. Let H∗(X;Zp) be a Hopf algebra. Given r ≥ 1, let p(r) denote the largest integer such

that pp(r) divides the factorial pr!. Let I∗ ⊂ H∗(X;Zp) be the subset of indecomposables defined for

a ∈ I∗, z ∈ H∗(X;Zp) and the integer κz ≥ 1 such that βp(t) P
(t)
1 (z) = βp(t) P

(t−1)
1 ψ1,n(z) = 0

mod D∗ for t < κz and
a) For p > 2 :

a =

βp(κz) P
(κz)
1 (z), n = 1 and z is odd dimensional,

βp(κz) P
(κz−1)
1 ψ1,n(z), n > 1 and z is even dimensional;

b) For p = 2 :

a = β2(κz) Sq
(κz−1)
1 ψ1,n(z), n ≥ 1.

Then Kerσ = I∗ ∪ D∗.

Proof. The map τ : RH⊗Zp → V̄ ⊗Zp, a⊗1→ a|V ⊗1 realizes the loop suspension map σ as (cf. [4])

σ : Hm(X;Zp) ≈ Hm(RH ⊗ Zp, dh)
τ∗

→ Hm−1(V̄ ⊗ Zp, d̄h) ≈ Hm−1(ΩX;Zp).

The inclusion D∗ ⊂ Kerσ immediately follows from the above definition of σ. Let a ∈ Kerσ be
indecomposable. Then for y ∈ RH with [tZp

(y)] = a, there is the sequence (xm)m≥0 in RH and r ≥ 1
such that

dh(xm−1) = y + um−1 mod p,

dh(xi) = ui mod p, ui ∈ D∗, i < m for

m =

{
pr, p and |x0| are odd,

2pr−1, otherwise.

Let z = pp(r)

pr! [tZp(x0)]. Denote κz := r. Then taking into account (2.3) and the coefficients %k,qk of

xk+qk−1 in (2.4) for q = p − 1 and k = pt and k = 2pt−1, 1 ≤ t ≤ κz, we establish the equalities of
Items a) – b) as desired. Hence, a ⊂ I∗. The implication I∗ ∪ D∗ ⊂ Kerσ is obvious. �
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ON THE EXISTENCE OF UNIVERSAL SERIES WITH SPECIAL PROPERTIES

SHAKRO TETUNASHVILI

Abstract. An arbitrary system of Lebesgue measurable and almost everywhere finite functions

Φ = {ϕn(x)}∞n=1 such that there exists a universal series with respect to Φ is considered. A theorem
asserting that for any sequence of real numbers (cn)∞n=1 there exist two universal series with respect

to Φ such that every cn is a product of two corresponding coefficients of these two universal series

is formulated.

Let Φ = {ϕn(x)}∞n=1 be an arbitrary system of Lebesgue measurable and almost everywhere finite
functions defined on [a, b].

Definition 1. A series
∞∑

n=1

αnϕn(x) (1)

is called a universal series with respect to Φ in the sense of subsequences of partial sums of this series,
if for any Lebesgue measurable function f(x) defined on [a, b] and finite or infinite at any point of [a, b]
there exists a strictly increasing sequence of natural numbers (mk)

∞
k=1 ↑ ∞ such that the equality:

lim
k→∞

mk∑
n=1

αnϕn(x) = f(x)

holds for almost all x ∈ [a, b].

In what follows, for the sake of brevity, a universal series (1) with respect to Φ in the sense of
subsequences of partial sums of (1) is called a universal series with respect to Φ and measurable is
applied instead of Lebesgue measurable.

D. E. Menshoff was the first who established the existence of universal trigonometric series and
proved that any trigonometric series is a sum of two universal trigonometric series (see [3]). Namely,
he proved that for any sequence of real numbers (cn)

∞
n=1 there exist two universal trigonometric series

with coefficients
(
α
(1)
n

)∞
n=1

and
(
α
(2)
n

)∞
n=1

, respectively, such that for every natural number n ≥ 1 the

following equality

cn = α(1)
n + α(2)

n

holds.
A. A. Talaljan proved (see [2, Theorem 9.2.11]) that for any complete and orthonormal system Φ

there exists a universal series (1) with respect to Φ such that lim
n→∞

αn = 0.

Various aspects of the theory of universal series are presented in the article of K. G. Grosse-
Erdman [1].

In [4], the above-mentioned result of Menshoff on trigonometric series is generalized for the series
with respect to any system Φ of measurable and almost everywhere finite functions such that there
exists a universal series with respect to Φ, in particular, for the series with respect to any complete
and orthonormal system Φ (see [4, Theorem 1 and Theorem 2]).

The above-indicated results of [3] and [4] hold true not only for the sums of corresponding coefficients
of the above-mentioned two universal series, but also for the products of corresponding coefficients of
certain two universal series. Namely, the following theorem holds.
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Theorem 1. Let Φ = {ϕn(x)}∞n=1 be an arbitrary system of measurable and almost everywhere finite
functions defined on [a, b] and (cn)

∞
n=1 be any sequence of real numbers, then a necessary and sufficient

condition for the validity of the equality

cn = α(1)
n · α(2)

n

for every natural number n ≥ 1, where
∞∑

n=1
α
(1)
n ϕn(x) and

∞∑
n=1

α
(2)
n ϕn(x) are certain universal series

with respect to Φ, is the existence of a universal series with respect to Φ.

A consequence of Theorem 1 and of the above-mentioned theorem of A. A. Talaljan is the following

Theorem 2. Let Φ = {ϕn(x)}∞n=1 be any complete and orthonormal system of functions defined on

[a, b], then for any sequence of real numbers (cn)
∞
n=1, there exist two universal series

∞∑
n=1

α
(1)
n ϕn(x)

and
∞∑

n=1
α
(2)
n ϕn(x) with respect to Φ such that the equality

cn = α(1)
n · α(2)

n

holds for every natural number n ≥ 1.

Proposition 1. For any system Φ of measurable and almost everywhere finite functions defined on
[a, b] such that there exists a universal series with respect to Φ, in particular, for any complete and
orthonormal system Φ, there exist two series

∞∑
n=1

αnϕn(x) and

∞∑
n=1

1

αn
ϕn(x)

with respect to Φ such that every one of them is a universal series with respect to Φ.
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ON SETS OF UNIQUENESS OF SOME FUNCTION SERIES

SHAKRO TETUNASHVILI1,2 AND TENGIZ TETUNASHVILI2,3

Abstract. Uniqueness theorems for function series with respect to systems of finite functions,

Lebesgue measurable and finite functions, and some orthonormal systems of functions are formu-
lated.

1. Notation and Definitions

Let Φ = {ϕn(x)}∞n=1 be a system of finite functions defined on [0, 1], a = (a1, a2, . . . , an, . . .) be a
sequence of real numbers, and θ = (0, 0, 0, . . .) be a constant sequence of zeros. a 6= θ means that there
exists a natural number n0 ≥ 1 such that an0

6= 0.
Let S be the set of all sequences of real numbers, S = {a : a = (a1, a2, . . . , an, . . .)}. Let S0 be the

set S\{θ}, i.e., S0 = {a : (a ∈ S) & (a 6= θ)}.
Consider a series with respect to Φ:

∞∑
n=1

anϕn(x). (1)

For every fixed x ∈ [0, 1] let

A(x) =

{
a : (a ∈ S0) &

( ∞∑
n=1

anϕn(x) 6= 0

)}
and for every fixed a ∈ S0 let

E(a) =

{
x : (x ∈ [0, 1]) &

( ∞∑
n=1

anϕn(x) 6= 0

)}
.

Definition 1. A set H ⊂ [0, 1] is called a U -set if the convergence of a series
∞∑

n=1
anϕn(x) to zero for

every x ∈ [0, 1]\H implies that an = 0 for every natural number n ≥ 1.

2. A Uniqueness Theorem for Series with Respect to Systems of Finite Functions

Let Φ = {ϕn(x)}∞n=1 be a system of finite functions defined on [0, 1], then the following assertions
hold true:

Theorem 1. A set H ⊂ [0, 1] is a U -set if and only if⋃
x∈[0,1]\H

A(x) = S0.

Proposition 1. A set H ⊂ [0, 1] is a U -set if and only if

E(a)
⋂

([0, 1]\H) 6= ∅ for any a ∈ S0.

Proposition 2. If the empty set is a U -set, then a nonempty set H ⊂ [0, 1] is a U -set if and only if⋃
x∈H

A(x) ⊂
⋃

x∈[0,1]\H

A(x).
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3. A Uniqueness Theorem for Series with Respect to Systems of Lebesgue
Measurable and Finite Functions

Let Φ = {ϕn(x)}∞n=1 be a system of Lebesgue measurable and finite functions defined on [0, 1].
In what follows, µ∗ and µ∗ stand for Lebesgue inner and outer linear measures of a set, respectively,

and measurable is applied instead of Lebesgue measurable for the sake of brevity.

Definition 2. A series
∞∑

n=1
anϕn(x) is called a null-series with respect to Φ if

∞∑
n=1

anϕn(x) = 0 for

almost all x ∈ [0, 1] and there exists a natural number n0 ≥ 1 such that an0 6= 0.

Definition 3. An orthonormal system of functions Φ = {ϕn(x)}∞n=1 defined on [0, 1] is called a strictly

convergence system if
∞∑

n=1
a2n <∞ implies that a series

∞∑
n=1

anϕn(x) converges almost everywhere on

[0, 1] and
∞∑

n=1
a2n =∞ implies that a series

∞∑
n=1

anϕn(x) diverges on a subset of [0, 1] of positive Lebesgue

measure.

It is well known that if Φ is a strictly convergence system, then there is no null-series with respect
to Φ.

Note that examples of strictly convergence systems defined on [0, 1], are lacunar trigonometric
systems (see [3, Ch. 5, §6]), Rademacher’s system (see [1, Ch. 4, §5]), Kashin’s complete and
orthonormal system [2].

The following assertions hold true.

Theorem 2. If there is no null-series with respect to the system Φ = {ϕn(x)}∞n=1, then any set
H ⊂ [0, 1] such that µ∗H = 0 is a U -set.

Note that if a set H ⊂ [0, 1] is such that µ∗H = 0 and µ∗H = 1, then µ∗ ([0, 1]\H) = 0 and therefore,
according to Theorem 2, we have

Corollary 1. If there is no null-series with respect to the system Φ = {ϕn(x)}∞n=1, and a set H ⊂ [0, 1]
is such that µ∗H = 0 and µ∗H = 1, then both H and [0, 1]\H are U -sets.

Corollary 1 implies:

Corollary 2. If Φ = {ϕn(x)}∞n=1 is a strictly convergence system and a set H ⊂ [0, 1] is such that
µ∗H = 0 and µ∗H = 1, then both H and [0, 1]\H are U -sets.

Remark. It can be proved that after appropriate modifications of the notation and definitions pre-
sented in Section 1, the assertions formulated in Section 2 remain true for multiple function series,
too.
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