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Abstract. We derive Green’s formulas for the system of differential
equations of stationary oscillations in the theory of elastic mixtures, which
enable us to prove the uniqueness theorems for solutions of the boundary
value problems. The jump formulas for single and double-layer potentials
are derived. Using the theories of potentials and integral equations the
existence of solutions is proved.
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îâäæñéâ. ïðŽðæŽöæ éæôâĲñèæŽ áîâçŽá êŽîâãåŽ åâëîææï ïðŽùæëêŽèñ-
îæ îýâãæï áæòâîâêùæŽèñî àŽêðëèâĲŽåŽ ïæïðâéæïŽåãæï àîæêæï òëîéñèâ-
Ĳæ, îëéâèåŽ áŽýéŽîâĲæå áŽéðçæùâĲñèæŽ ïŽïŽäôãîë ŽéëùŽêâĲæï ŽéëêŽýïêæï
âîåŽáâîåëĲæï åâëîâéâĲæ. éæôâĲñèæŽ éŽîðæãæ áŽ ëîéŽàæ òâêæï ìëðâêùæ-
ŽèâĲæï ûõãâðæï òëîéñèâĲæ. ìëðâêùæŽèåŽ áŽ æêðâàîŽèñî àŽêðëèâĲŽåŽ
åâëîææï àŽéëõâêâĲæå áŽéðçæùâĲñèæŽ ŽéëùŽêâĲæï ŽéëêŽýïêæï ŽîïâĲëĲæï åâ-
ëîâéâĲæ.
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1. Introduction

Elastic composite materials with complex structures, as well as with
structures composed of substantially differing materials are widely applied
in the modern technological processes. Hemitropic elastic materials, mix-
tures produced from two or more elastic materials, etc., belong to the class
of such composite materials and structures. The study of practical problems
of mechanical properties of such materials naturally results in the necessity
to develop mathematical models, which would allow to get more precise
description of actual processes ongoing during the experiments. Mathemat-
ical modeling for such materials commenced as early as in the sixties of
the past century. The first mathematical model of an elastic mixture (solid
with solid), the so-called diffuse model, was developed by A. Green and
T. Steel in 1966. In this model, the interaction force between components
depends upon the difference of displacement vectors of components. In the
same year they have developed the single-temperature thermoelasticity the-
ory diffuse model of the elastic mixtures. Mathematical model of the linear
theory of thermoelasticity of two-temperature elastic mixtures for the com-
posites of granular, fibrous and layered structures was developed in 1984 by
L. Khoroshun and N. Soltanov. Normally, the study of processes ongoing
in the body is reduced, in the relevant mathematical model described by
the system of differential equations with partial derivatives, to the study of
boundary value problems (BVPs), mixed type BVPs and boundary-contact
problems, and also the fundamental matrix for solving the system of dif-
ferential equations playing a substantial role. For the diffuse and displace-
ment models of the two-component mixtures (single-temperature) thermoe-
lasticity theory, the issue of steadiness and correctness, identification of
the asymptotic behavior of problem solution, proving of the uniqueness
and existence theorems, solution of the BVPs for the domains bounded
by the specific surfaces, as absolutely and uniformly convergent series, are
studied by many scientists, among them: Alves, Munoz Rivera, Quin-
tanilla [2], Basheleishvili [3], Basheleishvili, Zazashvili [4], Burchuladze,
Svanadze [6], Gales [9], Giorgashvili, Skhvitaridze [13], [12], Giorgashvili,
Karseladze, Sadunishvili [11], Iesan [18], Nappa [29], Natroshvili, Jagh-
maidze, Svanadze [36], Svanadze [42], Quintanilla [41], Pompei [40], etc.

In this paper we derive Green’s formulas for the system of differential
equations of stationary oscillations in the theory of elastic mixtures, which
enable us to prove the uniqueness theorems for solutions of the boundary
value problems. Further, we establish mapping properties and jump for-
mulas for the single and double-layer potentials, and analyse the Fredholm
properties of the corresponding boundary operators. Using the potential
method and the theory of singular integral equations, the existence of solu-
tions to the basic boundary value problems is proved.
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We treat here only the classical setting of basic boundary value problems
for smooth domains, however applying the results obtained in the refer-
ences: Agranovich [1], Buchukuri, Chkadua, Duduchava, Natroshvili [5],
Duduchava, Natroshvili [8], Gao [10], Jentsch, Natroshvili [19–21], Jentsch,
Natroshvili, Wendland [22, 23], Kupradze, Gegelia, Basheleishvili, Burchu-
ladze [25], Mitrea, Mitrea, Pipher [28], Natroshvili [30–32], Natroshvili,
Giorgashvili, Stratis [33], Natroshvili, Giorgashvili, Zazashvili [34], Natro-
shvili, Kharibegashvili, Tediashvili [37], Natroshvili, Sadunishvili [38], Na-
troshvili, Stratis [39], and using the same type approaches and reasonings,
one can analyze the generalized basic and mixed type boundary value prob-
lems, as well as crack type and interface problems in Sobolev–Slobodetskii
and Bessel potential spaces for smooth and Lipschitz domains.

2. Basic Differential Equations

The basic dynamical relationships for the two-component elastic mix-
tures, taking two-temperature thermal field into consideration, are math-
ematically described by the following system of partial differential equa-
tions [24]

a1∆u′(x, t) + b1 grad div u′(x, t) + c∆u′′(x, t)+

+d grad div u′′(x, t)− κ[
u′(x, t)− u′′(x, t)

]−
−η1 gradϑ1(x, t)− η2 gradϑ2(x, t) + ρ1F

′(x, t) = ρ1∂
2
ttu

′(x, t),

c∆u′(x, t) + d grad div u′(x, t) + a2∆u′′(x, t)+

+b2 grad div u′′(x, t) + κ
[
u′(x, t)− u′′(x, t)

]−
−ζ1 grad ϑ1(x, t)− ζ2 gradϑ2(x, t) + ρ2F

′′(x, t) = ρ2∂
2
ttu

′′(x, t),

κ1∆ϑ1(x, t) + κ2∆ϑ2(x, t)− α
[
ϑ1(x, t)− ϑ2(x, t)

]−
−η1 div ∂tu

′(x, t)− ζ1 div ∂tu
′′(x, t) + G′(x, t) = κ′∂tϑ1(x, t),

κ2∆ϑ1(x, t) + κ3∆ϑ2(x, t) + α
[
ϑ1(x, t)− ϑ2(x, t)

]−
−η2 div ∂tu

′(x, t)− ζ2 div ∂tu
′′(x, t) + G′′(x, t) = κ′′∂tϑ2(x, t),

(2.1)

where ∆ is the three-dimensional Laplace operator, u′ = (u′1, u
′
2, u

′
3)
>, u′′ =

(u′′1 , u′′2 , u′′3)> are partial displacement vectors, ϑ1 and ϑ2 are temperatures of
each component of the mixture, F ′ = (F ′1, F

′
2, F

′
3)
>, F ′′ = (F ′′1 , F ′′2 , F ′′3 )> are

the mass forces, G′, G′′ are the thermal sources located in the components,
aj , bj , c, d are the elasticity coefficients, κ, ηj , ζj , κj , κ3, κ′, κ′′, α, j = 1, 2,
are the mechanical and thermal constants of the elastic mixture, ρ1, ρ2 are
the densities of mixture components, t is a time variable, x = (x1, x2, x3) is
a point in the three-dimensional Cartesian space, > denotes transposition.

In the system (2.1), aj , bj , c, d, j = 1, 2, are the constants given as
follows [15,17]

a1 = µ1 − λ5, b1 = µ1 + λ5 + λ1 − ρ2

ρ
α0,
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a2 = µ2 − λ5, b2 = µ2 + λ5 + λ2 +
ρ1

ρ
α0,

c = µ3 + λ5, d = µ3 − λ5 + λ3 − ρ1

ρ
α0, α0 = λ3 − λ4, ρ = ρ1 + ρ2,

where λ1, λ2, . . . , λ5, µ1, µ2, µ3 are elastic constants satisfying the condi-
tions

µ1 > 0, λ5 < 0, µ1µ2 − µ2
3 > 0, λ1 +

2
3

µ1 − ρ2

ρ
α0 > 0,

(
λ1 +

2
3

µ1 − ρ2

ρ
α0

)(
λ2 +

2
3

µ2 − ρ1

ρ
α0

)
>

(
λ3 +

2
3

µ3 − ρ1

ρ
α0

)2

.

From these inequalities it follows that

a1 > 0, a1 + b1 > 0,

d1 := a1a2 − c2 > 0, d2 := (a1 + b1)(a2 + b2)− (c + d)2 > 0.
(2.2)

In addition, from physical considerations it follows that

ρ1 > 0, ρ2 > 0, α > 0, κ > 0, κ′ > 0, κ′′ > 0,

κj > 0, j = 1, 2, 3, d3 := κ1κ3 − κ2
2 > 0.

(2.3)

If all the functions involved in the system (2.1) are harmonic time depen-
dent, i.e., u′(x, t) = u′(x) exp(−iσt), u′′(x, t) = u′′(x) exp(−iσt), ϑ1(x, t) =
ϑ1(x) exp(−iσt), ϑ2(x, t) = ϑ2(x) exp(−iσt), F ′(x, t) = F ′(x) exp(−iσt),
F ′′(x, t) = F ′′(x) exp(−iσt), G′(x, t) = G′(x) exp(−iσt), G′′(x, t) =
G′′(x) exp(−iσt), where σ ∈ R is oscillation frequency, i =

√−1, then from
the system (2.1) we obtain the following system of differential equations of
the theory of stationary oscillations of two-temperature elastic mixture:

a1∆u′(x) + b1 grad div u′(x) + c∆u′′(x) + d grad div u′′(x)−
−κ[

u′(x)− u′′(x)
]− η1 gradϑ1(x)− η2 grad ϑ2(x)+

+ρ1σ
2u′(x) = −ρ1F

′(x),

c∆u′(x) + d grad div u′(x) + a2∆u′′(x) + b2 grad div u′′(x)+

+κ
[
u′(x)− u′′(x)

]− ζ1 gradϑ1(x)− ζ2 gradϑ2(x)+

+ρ2σ
2u′′(x) = −ρ2F

′′(x),

κ1∆ϑ1(x) + κ2∆ϑ2(x)− α
[
ϑ1(x)− ϑ2(x)

]
+ iση1 div u′(x)+

+iσζ1 div u′′(x) + iσκ′ϑ1(x) = −G′(x),

κ2∆ϑ1(x) + κ3∆ϑ2(x) + α
[
ϑ1(x)− ϑ2(x)

]
+ iση2 div u′(x)+

+iσζ2 div u′′(x) + iσκ′′ϑ2(x) = −G′′(x);

(2.4)

here u′, u′′, F ′, F ′′ are the complex vector-functions and ϑ1, ϑ2, G′, G′′,
are the complex scalar functions.

If σ = σ1 + iσ2 is a complex parameter and σ2 6= 0, then (2.4) is called
the system of differential equations of pseudooscillations, and if σ = 0, then
(2.4) is the system of differential equations of statics.
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Let us introduce the matrix differential operator of order 8×8, generated
by the left hand side expressions in system (2.4),

L(∂, σ) :=




L(1)(∂, σ) L(2)(∂, σ) L(5)(∂, σ) L(6)(∂, σ)
L(3)(∂, σ) L(4)(∂, σ) L(7)(∂, σ) L(8)(∂, σ)
L(9)(∂, σ) L(10)(∂, σ) L(13)(∂, σ) L(14)(∂, σ)
L(11)(∂, σ) L(12)(∂, σ) L(15)(∂, σ) L(16)(∂, σ)




8×8

,

where

L(1)(∂, σ) := (a1∆ + α′)I3 + b1Q(∂),

L(2)(∂, σ) = L(3)(∂, σ) := (c∆ + κ)I3 + dQ(∂),

L(4)(∂, σ) := (a2∆ + α′′)I3 + b2Q(∂),

L(4+j)(∂, σ) := −ηj∇>, L(6+j)(∂, σ) = −ζj∇>, j = 1, 2,

L(9)(∂, σ) := iση1∇, L(10)(∂, σ) := iσζ1∇,

L(11)(∂, σ) := iση2∇, L(12)(∂, σ) := iσζ2∇,

L(13)(∂, σ) := κ1∆ + α1, L(16)(∂, σ) := κ3∆ + α2,

L(14)(∂, σ) = L(15)(∂, σ) := κ2∆ + α;

here α′ = −κ + ρ1σ
2, α′′ = −κ + ρ2σ

2 α1 = −α + iσκ′, α2 = −α + iσκ′′,
∇ ≡ ∇(∂) := [∂1, ∂2, ∂3], ∂ = (∂1, ∂2, ∂3), ∂j = ∂/∂xj , j = 1, 2, 3, I3 is the
3× 3 unit matrix, Q(∂) := [∂k∂j ]3×3.

Applying these notation, the system (2.4) can be written as

L(∂, σ)U(x) = Φ(x),

where U = (u′, u′′, ϑ1, ϑ2)>, Φ = (−ρ1F
′,−ρ2F

′′,−G′,−G′′)>.
In what follows, we apply the following differential operators:

L0(∂) :=




L
(1)
0 (∂) L

(2)
0 (∂) [0]3×1 [0]3×1

L
(3)
0 (∂) L

(4)
0 (∂) [0]3×1 [0]3×1

[0]1×3 [0]1×3 κ1∆ κ2∆
[0]1×3 [0]1×3 κ2∆ κ3∆




8×8

, (2.5)

L̃0(∂) :=

[
L

(1)
0 (∂) L

(2)
0 (∂)

L
(3)
0 (∂) L

(4)
0 (∂)

]

6×6

,

where

L
(1)
0 (∂) := a1I3∆ + b1Q(∂),

L
(2)
0 (∂) = L

(3)
0 (∂) := cI3∆ + dQ(∂),

L
(4)
0 (∂) := a2I3∆ + b2Q(∂).
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Further let us introduce the operators

T (∂, n) :=
[
T (1)(∂, n) T (2)(∂, n)
T (3)(∂, n) T (4)(∂, n)

]

6×6

,

T (l)(∂, n) =
[
T

(l)
kj (∂, n)

]
3×3

, l = 1, 4,

(2.6)

where [15,16]

T
(1)
kj (∂, n) := (µ1 − λ5)δkj∂n + (µ1 + λ5)nj∂k+

+
(
λ1 − ρ2

ρ
α0

)
nk∂j ,

T
(2)
kj (∂, n) = T

(3)
kj (∂, n) := (µ3 + λ5)δkj∂n + (µ3 − λ5)nj∂k+

+
(
λ3 − ρ1

ρ
α0

)
nk∂j ,

T
(4)
kj (∂, n) := (µ2 − λ5)δkj∂n + (µ2 + λ5)nj∂k+

+
(
λ2 +

ρ1

ρ
α0

)
nk∂j ,

where ∂n = ∂/∂n is the normal derivative, n = (n1, n2, n3);

T̃ (∂, n) :=




T (1)(∂, n) T (2)(∂, n) [0]3×1 [0]3×1

T (3)(∂, n) T (4)(∂, n) [0]3×1 [0]3×1

[0]1×3 [0]1×3 κ1∂n κ2∂n

[0]1×3 [0]1×3 κ2∂n κ3∂n




8×8

,

P(∂, n) :=




T (1)(∂, n) T (2)(∂, n) −η1n
> −η2n

>

T (3)(∂, n) T (4)(∂, n) −ζ1n
> −ζ2n

>

[0]1×3 [0]1×3 κ1∂n κ2∂n

[0]1×3 [0]1×3 κ2∂n κ3∂n




8×8

,

P∗(∂, n) :=




T (1)(∂, n) T (2)(∂, n) −iση1n
> −iση2n

>

T (3)(∂, n) T (4)(∂, n) −iσζ1n
> −iσζ2n

>

[0]1×3 [0]1×3 κ1∂n κ2∂n

[0]1×3 [0]1×3 κ2∂n κ3∂n




8×8

, (2.7)

where T (l)(∂, n), l = 1, 2, 3, 4, are given by (2.6), n> = (n1, n2, n3)>.

3. Green’s Formulas

Let Ω+ be a finite three-dimensional region bounded by the Lyapunov
surface ∂Ω; Ω− := R3 \ Ω+.

Definition 3.1. A vector U = (u′, u′′, ϑ1, ϑ2)> will be called regular in
a domain Ω ⊂ R3 if U ∈ C2(Ω) ∩ C1(Ω).
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Let

U = (u, ϑ)>, V = (v, ϑ′)>, u = (u′, u′′)>, v = (v′, v′′)>,

ϑ = (ϑ1, ϑ2)>, ϑ′ = (ϑ′1, ϑ
′
2)
>.

It can be proved that for regular vectors u and v, the following Green’s
formula is valid [36]

∫

Ω+

v · L̃0(∂)u dx =
∫

∂Ω

[v(z)]+ · [T (∂, n)u(z)]+ ds−
∫

Ω+

E(u, v) dx, (3.1)

where the differential operator T (∂, n) is given by formula (2.6), n(z) is the

outward unit normal vector w.r.t. Ω+ at the point z ∈ ∂Ω, a · b =
3∑

j=1

ajbj

is the scalar product of vectors a and b, and E(u, v) is a quatratic form
defined as follows:

E(u, v) =
(
λ1 − %2

%
α0

)
div v′ div u′ +

(
λ2 +

%1

%
α0

)
div v′′ div u′′+

+
(
λ3 − %1

%
α0

)
(div v′ div u′′ + div v′′ div u′)+

+
µ1

2

3∑

k,j=1

(∂jv
′
k + ∂kv′j)(∂ju

′
k + ∂ku′j)+

µ2

2

3∑

k,j=1

(∂jv
′′
k + ∂kv′′j )(∂ju

′′
k + ∂ku′′j )+

+
µ3

2

3∑

k,j=1

[
(∂jv

′
k+∂kv′j)(∂ju

′′
k +∂ku′′j )+(∂jv

′′
k +∂kv′′j )(∂ju

′
k+∂ku′j)

]
−

− λ5

2

3∑

k,j=1

(∂jv
′
k−∂kv′j−∂jv

′′
k +∂kv′′j )(∂ju

′
k−∂ku′j−∂ju

′′
k +∂ku′′j ). (3.2)

Rewrite the vector L(∂, σ)U as

L(∂, σ)U = L0(∂)U + L′0(∂, σ)U, (3.3)

where

L′0(∂, σ)U =




α′u′ + κu′′ − η1∇>ϑ1 − η2∇>ϑ2

κu′ + α′′u′′ − ζ1∇>ϑ1 − ζ2∇>ϑ2

iση1∇u′ + iσζ1∇u′′ + α1ϑ1 + αϑ2

iση2∇u′ + iσζ2∇u′′ + αϑ1 + α2ϑ2




8×1

. (3.4)

Note that

V ·L0(∂)U = v ·L̃0(∂)u+ϑ′1(κ1∆ϑ1+κ2∆ϑ2)+ϑ′2(κ2∆ϑ1+κ3∆ϑ2). (3.5)
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The following equality is valid [43]
∫

Ω+

ϑ′k∆ϑj dx =

=
∫

∂Ω

[
ϑ′k(z)∂nϑj(z)

]+
ds−

∫

Ω+

(∇>ϑ′k · ∇>ϑj

)
dx, k, j = 1, 2. (3.6)

Using equalities (3.1) and (3.6), from (3.5) we have
∫

Ω+

V · L0(∂)U dx =
∫

∂Ω

[
V (z) · T̃ (∂, n)U(z)

]+
ds−

∫

Ω+

E(U, V ) dx, (3.7)

where

E(U, V ) = E(u, v) + κ1(∇>ϑ′1 · ∇>ϑ1)+

+ κ2

(∇>ϑ′1 · ∇>ϑ2 +∇>ϑ′2 · ∇>ϑ1

)
+ κ3(∇>ϑ′2 · ∇>ϑ2)

and E(u, v) is given by (3.2).
Multiplying both sides of equality (3.4) by vector V = (v, ϑ′)> and taking

into consideration the equality
∫

Ω+

v′ ·∇>ϑj dx =
∫

∂Ω

[
ϑj(z)(n(z)·v′(z))

]+
ds−

∫

Ω+

ϑj∇v′ dx, j = 1, 2, (3.8)

we obtain
∫

Ω+

V ·L′0(∂, σ)U dx=−
∫

∂Ω

[
(η1ϑ1+η2ϑ2)(n · v′)+(ζ1ϑ1+ζ2ϑ2)(n · v′′)

]+

ds+

+
∫

Ω+

[
v′(α′u′ + κu′′) + v′′(κu′ + α′′u′′)+

+ iσ
(
η1ϑ

′
1∇u′ + ζ1ϑ

′
1∇u′′ + η2ϑ

′
2∇u′ + ζ2ϑ

′
2∇u′′

)
+

+ ϑ′1(α1ϑ1 + αϑ2) + ϑ′2(αϑ1 + α2ϑ2)
]
dx. (3.9)

Combining equalities (3.7) and (3.9) we get
∫

Ω+

V · L(∂, σ)U dx =
∫

∂Ω

[
V (z) · P(∂, n)U(z)

]+

ds−
∫

Ω+

[
E(U, V )−v′ · (α′u′+κu′′)−v′′ · (κu′+α′′u′′)−iσϑ′1(η1∇u′+ζ1∇u′′)−

−iσϑ′2(η2∇u′ + ζ2∇u′′)− ϑ′1(α1ϑ1 + αϑ2)− ϑ′2(αϑ1 + α2ϑ2)
]
dx. (3.10)
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With the help of equality (3.10), we derive
∫

Ω+

[
V · L(∂, σ)U − U · L∗(∂, σ)V

]
dx =

=
∫

∂Ω

[
V (z) · P(∂, n)U(z)− U(z) · P∗(∂, n)V (z)

]+

ds, (3.11)

where L∗(∂, σ) =
[
L(−∂, σ)

]> and P∗(∂, n) is given by (2.7). The formulas
(3.10) and (3.11) are Green’s formulas.

Assume that a vector U =(u, ϑ)> is e solution of equation L(∂, σ)U = 0.
According to (3.3) we obtain

L0(∂)U + L′0(∂, σ)U = 0, (3.12)

where L0(∂) is given by formula (2.5) and L′0(∂, σ)U is defined by equal-
ity (3.4).

Let us multiply the first equation of (3.12) by the vector u′, the second
one by the vector u′′ and the complex conjugates of the third and fourth
equations, respectively, by the functions 1

iσ ϑ1 and 1
iσ ϑ2 and sum up. In

addition, taking into consideration equalities (3.1) and (3.8), we obtain
∫

Ω+

[
− E(u, u)+

i

κ3σ

(
d3|∇>ϑ1|2+|κ2∇>ϑ1+κ3∇>ϑ2|2

)
−κ|u′−u′′|2+

+ ρ1σ
2|u′|2 + ρ2σ

2|u′′|2 +
αi

σ
|ϑ1 − ϑ2|2 −

(
κ′|ϑ1|2 + κ′′|ϑ2|2

)]
dx+

+
∫

∂Ω

[
u(z)T (∂, n)u(z)− (η1ϑ1 + η2ϑ2)(n · u′)− (ζ1ϑ1 + ζ2ϑ2)(n · u′′)−

− i

κ3σ

(
d3ϑ1∂nϑ1 + (κ2ϑ1 + κ3ϑ2)(κ2∂nϑ1 + κ3∂nϑ2)

)]+

ds = 0. (3.13)

Here u is the complex conjugate of u and

E(u, u)=
d2

a1+b1
| div u′′|2+

1
a1+b1

∣∣(a1+b1) div u′+(c+d) div u′′
∣∣2+

+
d4

2µ1

3∑

k 6=j=1

|∂ju
′′
k +∂ku′′j |2+

1
2µ1

3∑

k 6=j=1

∣∣µ1(∂ju
′
j +∂ku′j)+µ3(∂ju

′′
k+∂ku′′j )

∣∣2−

− λ5

2

3∑

k,j=1

∣∣∂ju
′
k − ∂ku′j − ∂ju

′′
k + ∂ku′′j

∣∣2 > 0, (3.14)

where d4 = µ1µ2 − µ2
3 > 0. The sesquilinear form E(u, u) is obtained from

formula (3.2) by substituting the vectors v′ and v′′ by the vectors u′ and u′′,
respectively, and taking into consideration that λ1 − ρ2

ρ α0 = a1 + b1 − 2µ1,
λ2 + ρ1

ρ α0 = a2 + b2 − 2µ2, λ3 − ρ1
ρ α0 = c + d− 2µ3.
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4. Formulation of Problems. Uniqueness Theorems

Problem (I(σ))± (Dirichlet’s problem). Find a regular vector U =
(u′, u′′, ϑ1, ϑ2)> satisfying the system of differential equations

L(∂, σ)U(x) = Φ±(x), x ∈ Ω±, (4.1)

and the boundary conditions

{U(z)}± = f(z), z ∈ ∂Ω; (4.2)

Problem (II(σ))± (Neumann’s problem). Find a regular vector U =
(u′, u′′, ϑ1, ϑ2)> satisfying (4.1) and the boundary conditions

{P(∂, n) U(z)}± = F (z), z ∈ ∂Ω; (4.3)

here Φ± are eight-component given vectors in Ω±, respectively while

f = (f (1), f (2), f (3), f (4))>, F = (F (1), F (2), F (3), F (4))>,

f (j) = (f (j)
1 , f

(j)
2 , f

(j)
3 )>, F (j) = (F (j)

1 , F
(j)
2 , F

(j)
3 )>, j = 1, 2,

with f (j), F (j), j = 3, 4, being scalar function are assumed to be given on
the boundary ∂Ω±; n(z) is the outward unit normal vector w.r.t. Ω+ at the
point z ∈ ∂Ω.

In the case of the exterior problems for the domain Ω−, a vector U(x) in a
neighbourhood of infinity has to satisfy some sufficient vanishing conditions
allowing one to write Green’s formula (3.13) for the domain Ω−.

Theorem 4.1. If σ = σ1 + iσ2, where σ1 ∈ R, σ2 > 0, then the homo-
geneous problems (I(σ))+0 and (II(σ))+0 (Φ+ = 0, f = 0, F = 0) have only
the trivial solution.

Proof. If in equation (3.13) we take into consideration the homogeneous
boundary conditions, we obtain

∫

Ω+

[
− E(u, u)+

i

κ3σ

(
d3|∇>ϑ1|2+|κ2∇>ϑ1+κ3∇>ϑ2|2

)
−κ|u′−u′′|2+

+ ρ1σ
2|u′|2+ρ2σ

2|u′′|2+
αi

σ
|ϑ1−ϑ2|2−

(
κ′|ϑ1|2+κ′′|ϑ2|2

)]
dx=0. (4.4)

Separating the imaginary part of the equation (4.4), we obtain

σ1

∫

Ω+

[
1

κ3|σ|
(
d3|∇>ϑ1|2 + |κ2∇>ϑ1 + κ3∇>ϑ2|2

)
+

+ 2ρ1σ2|u′|2 + 2ρ2σ2|u′′|2 +
α

|σ|2 |ϑ1 − ϑ2|2
]

dx = 0. (4.5)
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Assuming that σ1 6= 0, from (4.5) we get u′(x) = 0, u′′(x) = 0, ϑ1(x) =
ϑ2(x) = const, x ∈ Ω+. Taking these data into account in (4.4), we obtain
ϑ1(x) = ϑ2(x) = 0, x ∈ Ω+. If σ1 = 0, then from (4.4) we have

∫

Ω+

[
E(u, u)+

1
κ3σ2

(
d3|∇>ϑ1|2+|κ2∇>ϑ1+κ3∇>ϑ2|2

)
+κ|u′−u′′|2+

+ ρ1σ
2
2 |u′|2+ρ2σ

2
2 |u′′|2+

α

σ2
|ϑ1−ϑ2|2+

(
κ′|ϑ1|2+κ′′|ϑ2|2

)]
dx=0.

From this equation we easily deduce u′(x) = 0, u′′(x) = 0, ϑ1(x) = 0,
ϑ2(x) = 0, x ∈ Ω+. ¤

5. Integral Representation Formulas

The fundamental matrix of solutions of the homogeneous system of differ-
ential equations of pseudo-oscillations of the two-temperature elastic mix-
tures theory reads as ( [14,42]):

Γ(x, σ) =

=
1

4πd1d2d3




Ψ̃1(x, σ) Ψ̃2(x, σ) ∇>Ψ13(x, σ) ∇>Ψ14(x, σ)

Ψ̃3(x, σ) Ψ̃4(x, σ) ∇>Ψ15(x, σ) ∇>Ψ16(x, σ)
∇Ψ17(x, σ) ∇Ψ18(x, σ) Ψ5(x, σ) Ψ6(x, σ)
∇Ψ19(x, σ) ∇Ψ20(x, σ) Ψ7(x, σ) Ψ8(x, σ)




, (5.1)

where d1, d2 are given by (2.2) and d3 is given by (2.3),

Ψ̃1(x, σ) = Ψ1(x, σ)I3 + Q(∂)Ψ9(x, σ),

Ψ̃2(x, σ) = Ψ2(x, σ)I3 + Q(∂)Ψ10(x, σ),

Ψ̃3(x, σ) = Ψ3(x, σ)I3 + Q(∂)Ψ11(x, σ),

Ψ̃4(x, σ) = Ψ4(x, σ)I3 + Q(∂)Ψ12(x, σ),

Ψl(x, σ) =
2∑

j=1

pjβ
∗
lj

eikj |x|

|x| , l = 1, 2, 3, 4,

Ψl−8(x, σ) =
6∑

j=3

pjβ
∗
lj

eikj |x|

|x| , l = 13, 14, 15, 16,

Ψl+8(x, σ) = −
6∑

j=1

pjγ
∗
lj

eikj |x|

|x| , l = 1, 2, 3, 4,

Ψl+8(x, σ) = i

6∑

j=3

pjδ
∗
lj

eikj |x|

|x| , l = 5, 6, . . . , 12.

(5.2)
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k2
j , j = 1, 2, and k2

j , j = 3, 4, 5, 6, are, respectively, the solutions of the
following equations

a(z) := d1z
2 − (a1α

′′ + a2α
′ − 2cκ)z + α′α′′ − κ2 = 0,

Λ(z) :=
[
d3z

2 − (α1κ3 + α2κ1 − 2ακ2)z + α1α2 − α2
]
(a(z) + zb(z))−

− iσz
[
(κ3ε1(z) + κ1ε3(z)− 2κ2ε2(z))z + 2αε2(z)− α2ε1(z)−

− α1ε3(z)
]− σ2(η1ζ2 − η2ζ1)2z2 = 0,

where

b(z) := (d2 − d1)z − (b1α
′′ + b2α

′ − 2κd),

ε1(z) := η1δ
′′
1 (z) + ζ1δ

′
1(z), ε3(z) := η2δ

′′
2 (z) + ζ2δ

′
2(z),

ε2(z) := η1δ
′′
2 (z) + ζ1δ

′
2(z) = η2δ

′′
1 (z) + ζ2δ

′
1(z),

δ′j(z) := ηj

[
κ − (c + d)z

]
+ ζj

[
(a1 + b1)z − α′

]
, j = 1, 2,

δ′′j (z) := ζj

[
κ − (c + d)z

]
+ ηj

[
(a2 + b2)z − α′′

]
, j = 1, 2;

β∗1j := Λ∗j (α
′′ − a2k

2
j ), β∗2j = β∗3j := Λ∗j (ck

2
j − κ),

β∗4j := Λ∗j (α
′−a1k

2
j ), β∗13j := a∗j

[
iσk2

j ε∗3j +(α2−κ3k
2
j )(a∗j +b∗jk

2
j )

]
,

β∗14j = β∗15j := −a∗j
[
iσk2

j ε∗2j + (α− κ2k
2
j )(a∗j + b∗jk

2
j )

]
,

β∗16j := a∗j
[
iσk2

j ε∗1j + (α1 − κ1k
2
j )(a∗j + b∗jk

2
j )

]
,

γ∗1j := a2Λ∗j −
[
a∗j (a2 + b2) + b∗jα

′′]H∗
j − α′′σ2(η1ζ2 − η2ζ1)2k2

j−
−iσ

[
(a∗jζ

2
1 + α′′ε∗1j)(α2 − κ3k

2
j ) + (a∗jζ

2
2 + α′′ε∗3j)(α1 − κ1k

2
j )−

−2(a∗jζ1ζ2 + α′′ε∗2j)(α− κ2k
2
j )

]
,

γ∗2j = γ∗3j := −cΛ∗j +
[
a∗j (c + d) + b∗jκ

]
H∗

j − κσ2(η1ζ2 − η2ζ1)2k2
j +

+iσ
[
(a∗jη1ζ1 + κε∗1j)(α2 − κ3k

2
j ) + (a∗jη2ζ2 + κε∗3j)(α1 − κ1k

2
j )+

+
(
2κε∗2j + (η1ζ2 + η2ζ1)a∗j

)
(α− κ2k

2
j )

]
,

γ∗4j := a1Λ∗j −
[
a∗j (a1 + b1) + b∗jα

′]H∗
j + α′σ2(η1ζ2 − η2ζ1)2k2

j−
−iσ

[
(a∗jη

2
1 + α′ε∗1j)(α2 − κ3k

2
j ) + (a∗jη

2
2 + α′ε∗3j)(α1 − κ1k

2
j )−

−2(a∗jη1η2 + α′ε∗2j)(α− κ2k
2
j )

]
,

δ∗5j := ia∗j
[
iσζ2(η1ζ2−η2ζ1)k2

j +δ′′1j(α2−κ3k
2
j )−δ′′2j(α−κ2k

2
j )

]
,

δ∗6j := ia∗j
[
− iσζ1(η1ζ2−η2ζ1)k2

j−δ′′1j(α−κ2k
2
j )+δ′′2j(α1−κ1k

2
j )

]
,

δ∗7j := ia∗j
[
− iση2(η1ζ2−η2ζ1)k2

j +δ′1j(α2−κ3k
2
j )−δ′2j(α−κ2k

2
j )

]
,

δ∗8j := ia∗j
[
iση1(η1ζ2−η2ζ1)k2

j−δ′1j(α−κ2k
2
j )+δ′2j(α1−κ1k

2
j )

]
,
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δ∗9j = −iσδ∗5j , δ∗10j = −iσδ∗7j , δ∗11j = −iσδ∗6j , δ∗12j = −iσδ∗8j .

a∗j := d1

2∏

j 6=q=1

(k2
j − k2

q), b∗j := (d2 − d1)k2
j − b2α

′ − b1α
′′ + 2κd,

Λ∗j :=d2d3

6∏

j 6=q=3

(k2
j−k2

q), H∗
j :=d3k

4
j−(α1κ3+α2κ1−2ακ2)k2

j +α1α2−α2;

δ′lj := ηl

[
κ − (c + d)k2

j

]
+ ζl

[
(a1 + b1)k2

j − α′
]
, l = 1, 2,

δ′′lj := ζl

[
κ − (c + d)k2

j

]
+ ηl

[
(a2 + b2)k2

j − α′′
]
, l = 1, 2,

ε∗1j = η1δ
′′
lj + ζ1δ

′
1j , ε∗2j = η1δ

′′
2j + ζ1δ

′
2j , ε∗3j = η2δ

′′
2j + ζ2δ

′
2j ,

pj =
6∏

j 6=q=1

(
k2

j − k2
q

)−1
.

Remark 5.1. Using formulas (5.1) and (5.2), and the equalities

k2m
1 p1 + k2m

2 p2 + · · ·+ k2m
6 p6 = 0, m = 0, 4,

k10
1 p1 + k10

2 p2 + · · ·+ k10
6 p6 = 1,

we conclude that in a vicinity of the origin the functions Ψj(x, σ), j = 1, 8,
and Ψj(x, σ), j = 9, 20, are, respectively, of order const + O(|x|−1) and
O(|x|−1).

Hereinafter, we shall always assume that kj 6= kp, j 6= p, =kj > 0,
j = 1, 6. According to these requirements regarding to equalities (5.2), all
entries of Γ(x, σ) exponentially decay at infinity.

Let us introduce the generalized single and double-layer potentials, and
the Newton type volume potential

V (ϕ)(x) =
∫

S

Γ(x− y, σ) ϕ(y) dSy, x ∈ R3 \ S, (5.3)

W (ϕ)(x) =
∫

S

[P∗(∂, n)Γ>(x− y, σ)]> ϕ(y) dSy, x ∈ R3 \ S, (5.4)

NΩ±(ψ)(x) =
∫

Ω±

Γ(x− y, σ)ψ(y) dy, x ∈ R3,

where P∗(∂, n) is the boundary differential operator defined by (2.7), Γ(·, σ)
is the fundamental matrix given by (5.1), ϕ = (ϕ1, · · · , ϕ8)> is a den-
sity vector-function defined on S, while a density vector-function ψ =
(ψ1, · · · , ψ8)> is defined on Ω±, and we assume that in the case of Ω−

the support of the density vector-function ψ of the Newtonian potential is
a compact set.

Due to the equality
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8∑

j=1

Lkj(∂x, σ)
(
[P∗(∂, n)Γ>(x− y, σ)]>

)
jp

=

=
8∑

j, q=1

Lkj(∂x, σ)P∗pq(∂, n)Γjq(x− y, σ) =

=
8∑

j, q=1

P∗pq(∂, n)Lkj(∂x, σ)Γjq(x− y, σ) = 0, x 6= y, k, p = 1, 8,

it can be easily checked that the potentials defined by (5.3) and (5.4) are
C∞–smooth in R3 \S and solve the homogeneous equation L(∂, σ)U(x) = 0
in R3 \ S for an arbitrary Lp-summable vector-function ϕ. The Newtonian
potential solves the nonhomogeneous equation

L(∂, σ)NΩ±(ψ) = ψ in Ω± for ψ ∈ [C0,k(Ω±)]8.

This relation holds true for an arbitrary ψ ∈ [Lp(Ω±)]8 with 1 < p < ∞.
It is easy to show that Γ(−x, σ) is a fundamental matrix of the formally
adjoint operator L∗(∂, σ), i.e.

L∗(∂, σ)
[
Γ(−x, σ)

]> = I8δ(x). (5.5)

With the help of Green’s formulas (3.11) and (5.5) by standard arguments
we can prove the following assertions (cf., e.g., [7, 26, 27] and [36, Ch. I,
Lemma 2.1; Ch. II, Lemma 8.2]).

Theorem 5.2. Let S = ∂Ω+ be C1, k-smooth with 0 < k ≤ 1, either
σ = 0 or σ = σ1 + i σ2 with σ2 > 0, and let U be a regular vector of the
class [C2(Ω+)]8. Then there holds the integral representation formula

W
({U}+)

(x)− V
({PU}+)

(x) + NΩ+

(
L(∂, σ)U

)
(x) =

=

{
U(x) for x ∈ Ω+,

0 for x ∈ Ω−.

Proof. For the smooth case it easily follows from Green’s formula (3.11)
with the domain of integration Ω+ \ B(x, ε′), where x ∈ Ω+ is treated as
a fixed parameter, B(x, ε′) is a ball with the centre at the point x and
radius ε′ > 0 and B(x, ε′) ⊂ Ω+. One needs to take the j-th column of the
fundamental matrix Γ∗(y − x, σ) for V (y), calculate the surface integrals
over the sphere Σ(x, ε′) := ∂B(x, ε′) and pass to the limit as ε′ → 0. ¤

Similar representation formula holds in the exterior domain Ω− if a vector
U and its derivatives possess some asymptotic properties at infinity. In
particular, the following assertion holds.

Theorem 5.3. Let S = ∂Ω− be C1, k-smooth with 0 < k ≤ 1 and let
U be a regular vector of the class [C2(Ω−)]8 such that for any multi-index
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α = (α1, α2, α3) with 0 ≤ |α| = α1 + α2 + α3 ≤ 2, the function ∂αUj is
polynomially bounded at infinity, i.e., for sufficiently large |x|∣∣∂αUj(x)

∣∣ ≤ C0 |x|m, j = 1, 8, (5.6)

with some constants m and C0 > 0. Then there holds the integral represen-
tation formula

−W
({U}−)

(x) + V
({PU}−)

(x) + NΩ−
(
L(∂, σ)U

)
(x) =

=

{
0 for x ∈ Ω+,

U(x) for x ∈ Ω−,
(5.7)

with σ = σ1 + i σ2, where σ2 > 0.

Proof. The proof immediately follows from Theorem 5.2 and Remark 3.1
(cf. [14]). Indeed, one needs to write the integral representation formula
(5.2) for the bounded domain Ω− ∩ B(0, R), and then send R to +∞ and
take into consideration that the surface integral over Σ(0, R) tends to zero
due to the conditions (5.6) and the exponential decay of the fundamental
matrix at infinity. ¤

Corollary 5.4. Let σ = σ1 + i σ2 with σ1 ∈ R and σ2 > 0, and U
be a solution to the homogeneous equation L(∂, σ)U = 0 in Ω± satisfying
the condition (5.6) and U ∈ [C1,k(Ω±)]8 for some 0 < k ≤ 1. Then the
representation formula

U(x) = W ([U ]S)(x)− V ([PU ]S)(x), x ∈ Ω±,

holds, where [U ]S = {U}+ − {U}− and [PU ]S = {PU}+ − {PU}− on S.

Proof. It Immediately follows from Theorems 5.2 and 5.3. ¤

Theorem 5.5. Assume that S = ∂Ω ∈ Cm,k, m ≥ 1 and 0 < k ≤ 1. If
g ∈ [C0,k′(S)]8, h ∈ [C0,k′(S)]8, 0 < k′ < k, then for each z ∈ S,

[V (g)(z)]± = V (g)(z) = Hg(z), (5.8)
[P(∂, n)V (g)(z)

]± = [∓2−1I8 +K]g(z), (5.9)

[W (h)(z)]± =
[± 2−1I8 +N ]

h(z), (5.10)
[P(∂, n)W (h)(z)

]+ =
[P(∂, n)W (h)(z)

]− = Lh(z), (5.11)

where

Hg(z) :=
∫

S

Γ(z − y, σ)g(y) dSy,

Lh(z) := lim
Ω±3x→z∈S

P(∂x, n(x))
∫

S

[P∗(∂y, n(y))Γ>(x− y, σ)
]>

h(y) dSy,

Kg(z) :=
∫

S

[P(∂, n)Γ(z − y, σ)
]
g(y) dSy,
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Nh(z) :=
∫

S

[P∗(∂, n)Γ>(z − y, σ)
]>

h(y) dSy.

The prove of this theorem is analogous to that given in [25,35].

Theorem 5.6. Assume that S = ∂Ω ∈ Cm,k, m ≥ 2, 0 < k′ < k ≤ 1,
l ≤ m− 1, σ = σ1 + iσ2, σ2 > 0. If g ∈ [C0,k′(S)]8, h ∈ [C1,k′(S)]8, then

V : [Cl,k′(S)]8 −→ [Cl+1,k′(Ω±)]8,

W : [Cl,k′(S)]8 −→ [Cl,k′(Ω±)]8,

H : [Cl,k′(S)]8 −→ [Cl+1,k′(S)]8,

K : [Cl,k′(S)]8 −→ [Cl,k′(S)]8,

N : [Cl,k′(S)]8 −→ [Cl,k′(S)]8,

L : [Cl,k′(S)]8 −→ [Cl−1,k′(S)]8.

Remark 5.7. Assume that σ = σ1 + iσ2, σ2 > 0 and =kj > 0. From
equation (5.7) it follows that if L(∂, σ)U(x) = 0, x ∈ Ω−, then U is ex-
ponentially decaying at infinity and therefore in the unbounded domain Ω−

Green’s formula (3.13) holds true,:
∫

Ω−

[
− E(u, u)+

i

κ3σ

(
d3|∇>ϑ1|2+|κ2∇>ϑ1+κ3∇>ϑ2|2

)
−κ|u′−u′′|2+

+ ρ1σ
2|u′|2 + ρ2σ

2|u′′|2 +
αi

σ
|ϑ1 − ϑ2|2 −

(
κ′|ϑ1|2 + κ′′|ϑ2|2

)]
dx−

−
∫

∂Ω

[
u(z) · T (∂, n)u(z)− (η1ϑ1 + η2ϑ2)(n · u′)− (ζ1ϑ1 + ζ2ϑ2)(n · u′′)−

− i

κ3σ

(
d3ϑ1∂nϑ1+(κ2ϑ1+κ3ϑ2)

(
κ2∂nϑ1+κ3∂nϑ2

))]−
ds=0, (5.12)

where the sesquilinear form E(u, u) is given by (3.14) and the operator
T (∂, n) by formula (2.6).

Similarly to Theorem 4.1 in view of formula (5.12) the following theorem
takes place.

Theorem 5.8. If σ = σ1 + iσ2, where σ1 ∈ R, σ2 > 0, then the homo-
geneous problems (I(σ))−0 and (II(σ))−0 (Φ±, f = 0, F = 0) have only the
trivial solution.

The following theorem is valid.

Theorem 5.9. Let S = ∂Ω ∈ Cm,k with integer m ≥ 2 and 0 < k ≤ 1.
Then:

(a) The principal homogenous symbol matrices of the singular integral
operators ∓2−1I8 + K and ±2−1I8 + N are non-degenerate, while
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the principal homogenous symbol matrices of the operators H and
L are positive definite;

(b) the operators H, ∓2−1I8+K, ±2−1I8+N and L are elliptic pseudo-
differential operators (of order −1, 0, 0 and 1, respectively) with zero
index;

(c) the following equalities hold in appropriate function spaces:
NH = HK, LN = KL,

HL = −4−1I8 +N 2, LH = −4−1I8 +K2.
(5.13)

The proof of this theorem is word for word of the proof of its counterparts
in [31,33,35,36].

6. Existence of Classical Solutions of the Boundary Value
Problems

This section provides the study of problems stated in Section 4 using the
theory of potentials and theory of integral equations. We seek solutions of
the problems in the form of single or double-layer potentials allowing one to
reduce the BVPs to the correspond boundary integral equations. Simulta-
neously, the question of invertibility of the obtained integral operators will
be considered.

6.1. Investigation of Dirichlet’s problem by the double-layer po-
tential. We seek solutions of problems (I(σ))+ and (I(σ))− (see (4.1), Φ± =
0, (4.2)) by means of the double-layer potential W (h)(x) (see (5.4)), where
h ∈ C1,β(S) is the sought for vector-function. Taking into consideration the
boundary condition (4.2) and the jump formulas (5.10), for the density h
we obtain the following integral equations of second kind

BVP (I(σ))+ :
[
2−1I8 +N ]

h = f on S, (6.1)

BVP (I(σ))− :
[− 2−1I8 +N ]

h = f on S. (6.2)

In the left hand side of(6.1) and (6.2) we have singular integral operators of
normal type with the index equal to zero (see Theorem 5.9).

Theorem 6.1. If S ∈ C2,α and f ∈ C1,β, 0 < β < α ≤ 1, then the prob-
lem (I(σ))+ has a unique solution representable by the double-layer potential
W (h), where h is determined from uniquely solvable integral equation (6.1).

Proof. Uniqueness follows from Theorem 4.1. Now, let us show that the
operator

2−1I8 +N : C1,β(S) −→ C1,β(S) (6.3)
is invertible. Note that the operator −2−1I8 +N the arguments are verba-
tim. By virtue of Theorem 5.9,operator (6.3) is Fredholm with zero index
and therefore for proving its invertibility it is sufficient to show that its
kernel ker(2−1I8 +N ) is trivial, i.e. we have to show that the homogeneous
equation [

2−1I8 +N ]
h = 0 on S (6.4)
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has only the trivial solution. Indeed, assume that h is a solution of (6.4)
and construct the double-layer potential W (h). In view of the inclusion h ∈
C1.β(S), we have W (h) ∈ C1,β(Ω±). It easy to see that equation (6.4) corre-
sponds to Dirichlet’s interior homogeneous problem [W (h)(z)]+ = 0, z ∈ S.
Since this problem has only the trivial solution, we conclude W (h)(x) = 0,
x ∈ Ω+. Therefore we have [P(∂, n)W (h)(z)]+ = 0, z ∈ S, and ac-
cording to the Lyapunov-Tauber theorem we deduce [P(∂, n)W (h)(z)]+ =
[P(∂, n)W (h)(z)]− = 0, z ∈ S (see Theorem 5.6). This means that W (h)(x)
is a solution to the homogeneous problem (II(σ))− which possesses only the
trivial solution. Thus W (h)(x) = 0, x ∈ Ω− and by virtue of formula (5.10)
we conclude that [W (h)(z)]+ − [W (h)(z)]− = h(z) = 0, z ∈ S, i.e. integral
equation (6.4) has only the trivial solution. Hence, the operator (6.3) is
invertible and therefore the equation (6.1) is unique solvable for arbitrary
vector-function f ∈ C1,β(S), which proves the theorem. ¤

The following theorem can be proved similarly.

Theorem 6.2. If S ∈ C2,α and f ∈ C1,β(S), 0 < β < α ≤ 1, then the
problem (I(σ))− has a unique solution, which is representable by the double-
layer potential W (h), where h is determined from unique by solvable integral
equation (6.2).

6.2. Investigation of Neumann’s problem by single-layer potential.
Solutions to the problems (II(σ))+ and (II(σ))− (see (4.1), Φ± = 0, (4.3))
are sought by single-layer potential V (g)(x), where g ∈ C0,β(S) (see (5.3)).
Taking into consideration the boundary conditions (4.3) and the jump for-
mulas (5.9) for the density g we obtain, the following integral equations of
second kind respectively

BVP (II(σ))+ :
[− 2−1I8 +K]

g = F on S, (6.5)

BVP (II(σ))− :
[
2−1I8 +K]

g = F on S. (6.6)

The operators in the left hand side of(6.5) and (6.6) are singular integral
operators of normal type with the index equal to zero (see Theorem 5.9).

Theorem 6.3. If S ∈ C1,α and F ∈ C0,β(S), 0 < β < α ≤ 1, then
the problem (II(σ))+ has a unique solution, which is representable by the
single-layer potential V (g)(x), where g is determined from uniquely solvable
integral equation (6.5).

Proof. Uniqueness follows from Theorem 4.1. Now, let us show that the
operator

−2−1I8 +K : C0,β(S) −→ C0,β(S) (6.7)

is invertible. Note that the invertibility of the operator 2−1I8 + K can
be performed by word for word arguments. By virtue of Theorem 5.9,
the operator (6.7) is Fredholm with zero index and therefore for proving its
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invertibility it is sufficient to show that its kernel ker(−2−1I8 +K) is trivial,
i.e. we have to show that the homogeneous equation

[− 2−1I8 +K]
g = 0 on S (6.8)

has only the trivial solution. Indeed, assume that g is e solution of (6.8).
Construct the single-layer potential V (g). Since g ∈ C0,β(S), we have
V (g) ∈ C1,β(Ω±). The equation (6.8) corresponds to Neumann’s interior
homogeneous problem [P(∂, n)V (g)(z)]+ = 0, z ∈ S. Since this prob-
lem has only the trivial solution, we get V (g)(x) = 0, x ∈ Ω+. Since
[V (g)(z)]− = [V (g)(z)]+ = 0, z ∈ S, we have that V (g)(x) is a solu-
tion of Dirichlet’s exterior homogeneous problem and hence V (g)(x) = 0,
x ∈ Ω−. On the other hand, by virtue of formula (5.9) we obtain that
[P(∂z, n(z))V (g)(z)]− − [P(∂z, n(z))V (g)(z)]+ = g(z) = 0, z ∈ S, i.e. the
integral equation (6.8) has only the trivial solution. Consequently, the oper-
ator (6.7) is invertible and therefore equation (6.5) is solvable for arbitrary
vector-function F ∈ C0,β(S), which proves the theorem. ¤

The following theorem can be proved similarly.

Theorem 6.4. If S ∈ C1,α and F ∈ C0,β(S), 0 < β < α ≤ 1, then
the problem (II(σ))− has a unique solution, which is representable by the
single-layer potential V (g), where g is determined from unique by solvable
integral equation (6.6).

6.3. Investigation of Dirichlet’s problem by single-layer potential.
We seek solutions of the problems (I(σ))+ and (I(σ))− (see (4.1), Φ± = 0,
(4.2)) by means of the single-layer potential V (g)(x) (see (5.3)), where g ∈
C0,β(S) is the sought for vector-function. Taking into consideration the
boundary condition (4.2) and the jump formula (5.8), for the density g we
obtain the following integral equation of the first kind:

Hg = f on S. (6.9)

Theorem 6.5. If S ∈ C2,α and f ∈ C1,β(S), 0 < β < α ≤ 1, then
the problem (I(σ))± has a unique solution, which can be represented by the
single-layer potential V (g), where g is determined from uniquely solvable
integral equation (6.9).

Proof. Uniqueness follows from Theorems 4.1 and 5.9. Now, let us show
that the operator

H : C0,β(S) −→ C1,β(S) (6.10)

is invertible. Applying the operator L to both sides of the equation (6.9),
we obtain (see (5.13)) the singular integral equation

LHg=(−4−1I8+K2)g=(−2−1I8+K)(2−1I8+K)g=Lf, (6.11)

where Lf ∈C0,β(S) and the operator

LH = (−2−1I8 +K)(2−1I8 +K) : C0,α(S) −→ C0,α(S)
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is a singular operator of normal type with the index equal to zero.By the
same arguments applied in [33], it can be shown that the operator (6.11) is
invertible. Therefore we can write

g = (2−1I8 +K)−1(−2−1I8 +K)−1Lf.

Let us show that (6.9) and (6.11) are equivalent integral equations. In-
deed, if g ∈ C0,β(S) is a solution to the equation (6.9), then it will be a
solution to the equation (6.11) as well. Assume now that g is a solution to
the equation (6.11). Introduce notation

ϕ := (Hg − f) ∈ C1,β(S). (6.12)

Then equation (6.11) can be rewritten as

Lϕ = 0 on S. (6.13)

Construct the double-layer potential W (ϕ) with the density ϕ determined by
equation (6.12). Then it follows that W (ϕ) solves Neumann’s homogeneous
problem [P(∂z, n(z))W (ϕ)(z)]± = 0, z ∈ S, in view of equation (6.13).
Since this problem has only the trivial solution, we infer W (ϕ)(x) = 0,
x ∈ Ω±. According to (5.10) we have [W (ϕ)(z)]+− [W (ϕ)(z)]− = ϕ(z) = 0,
z ∈ S, i.e. g is a solution to equation (6.9). Hence operator (6.10) is
invertible. ¤

Corollary 6.6. Solution to problem (I(σ))± is presentable in the follow-
ing form:

U(x) = V (H−1f)(x), x ∈ Ω±,

where [U(z)]± = f(z), z ∈ S.

This representation plays a crucial role in the study of mixed boundary
value problems, when on a part of the boundary ∂Ω the Dirichlet condition
is given, while on the remainder part the Neumann condition is prescribed

6.4. Investigation of Neumann’s problem by double-layer poten-
tial. We seek a solution to problem (II(σ))± (see (4.1), Φ± = 0, (4.3)) in
the form of double-layer potential W (h), where h ∈ C1,β(S) is the sought
vector (see (5.4)). Taking into consideration the boundary conditions (4.3)
and formula (5.11), for the density h we obtain the following integral equa-
tion of the “first kind”:

Lh = F on S. (6.14)

Theorem 6.7. If S ∈ C1,α and F ∈ C0,β(S), 0 < β < α ≤ 1, then the
problem (II(σ))± has a unique solution, which is representable by double-
layer potential W (h), where h is determined from uniquely solvable integral
equation (6.14).

Proof. Uniqueness follows from Theorems 4.1 and 5.9. Now, let us show
that the operator

L : C1,β(S) −→ C0,β(S) (6.15)
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is invertible. Apply the operatorH to both sides of equation (6.14) to obtain
the singular integral equation

HLh = (−4−1I8 +N 2)h = (−2−1I8 +N )(2−1I8 +N )h = HF, (6.16)

where HF ∈ C1,β(S) and the operator

HL = (−2−1I8 +N )(2−1I8 +N ) : C1,β(S) −→ C1,β(S) (6.17)

is a singular operator of normal type with zero index. Again, applying the
arguments as in [33] we can shown that (6.17) is invertible, and therefore
we can write

h = (2−1I8 +N )−1(−2−1I8 +N )−1HF.

Note that the operators (−2−1I8 +N ) and (2−1I8 +N ) commute.
Let us show that (6.14) and (6.16) are equivalent integral equations.

Indeed, if h ∈ C1,β(S) is e solution to equation (6.14), then it will be
solution to equation (6.16) as well. Introduce notation

ψ := (Lh− F ) ∈ C0,β(S). (6.18)

Then equation (6.16) can be rewritten as

Hψ = 0 on S. (6.19)

Construct the single-layer potential V (ψ) with the density ψ determined by
equation (6.18). Dirichlet’s problem [V (ψ)(z)]± = 0, z ∈ S, corresponds to
the equation (6.19). As this problem has only the trivial solution, we have
V (ψ)(x) = 0, x ∈ Ω±, from which we obtain that ψ(z) = 0, z ∈ Ω±, i.e. h is
a solution to equation (6.14) and hence the operator (6.15) is invertible. ¤

Corollary 6.8. The solution to the problem (II(σ))± is represented in
the following form:

U(x) = W (L−1F )(x), x ∈ Ω±,

where F (z) = [P (∂z, n(z))U(z)]±, z ∈ S.
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Abstract. The purpose of this paper is to investigate basic transmission
and interface crack problems for the differential equations of the theory of
elasticity of hemitropic materials with regard to thermal effects. We con-
sider the so called pseudo-oscillation equations corresponding to the time
harmonic dependent case. Applying the potential method and the theory of
pseudodifferential equations first we prove uniqueness and existence theo-
rems of solutions to the Dirichlet and Neumann type transmission-boundary
value problems for piecewise homogeneous hemitropic composite bodies. Af-
terwards we investigate the interface crack problems and study regularity
properties of solution.
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îâäæñéâ. ïðŽðææï éæäŽêæŽ ßâéæðîëìñèæ ïýâñèâĲæï áîâçŽáëĲæï åâëîæ-
æï áæòâîâêùæŽèñîæ àŽêðëèâĲâĲæïŽåãæï úæîæåŽáæ ïŽçëêðŽóðë áŽ ĲäŽîæï
ðæìæï ŽéëùŽêâĲæï àŽéëçãèâãŽ åâîéñèæ âòâóðâĲæï àŽåãŽèæïûæêâĲæå. àŽêýæ-
èñèæŽ â. û. òïâãáë-îýâãæï àŽêðëèâĲâĲæ, îëéèâĲæù öââïŽĲŽéâĲŽ áîëäâ ßŽî-
éëêæñèŽá áŽéëçæáâĲñè öâéåýãâãŽï. ìëðâêùæŽèåŽ éâåëáæïŽ áŽ òïâãáëáæ-
òâîâêùæŽèñî àŽêðëèâĲŽåŽ åâëîææï àŽéëõâêâĲæå þâî áŽéðçæùâĲñèæŽ áæ-
îæýèâïŽ áŽ êâæéŽêæï ðæìæï ïŽïŽäôãîë-ïŽçëêðŽóðë ŽéëùŽêâĲæï ŽéëêŽýïêâĲæï
ŽîïâĲëĲæïŽ áŽ âîåŽáâîåëĲæï åâëîâéâĲæ ñĲêëĲîæã âîåàãŽîëãŽêæ ßâéæðîë-
ìñèæ ïýâñèâĲæïŽåãæï, ýëèë öâéáâà àŽéëçãèâñèæŽ ĲäŽîæï ðæìæï ŽéëùŽêŽ,
îëáâïŽù ĲäŽîæ éáâĲŽîâëĲï ïŽçëêðŽóðë äâáŽìæîäâ, áŽ öâïûŽãèæèæŽ Žéë-
êŽýïêæï îâàñèŽîëĲŽ.
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1. Introduction

Technological and industrial developments, and also recent important
progress in biological and medical sciences require the use of more general
and refined models for elastic bodies. In a generalized solid continuum, the
usual displacement field has to be supplemented by a microrotation field.
Such materials are called micropolar or Cosserat solids. They model con-
tinua with a complex inner structure whose material particles have 6 degree
of freedom (3 displacement components and 3 microrotation components).
Recall that the classical elasticity theory allows only 3 degrees of freedom
(3 displacement components).

Experiments have shown that micropolar materials possess quite different
properties in comparison with the classical elastic materials (see, e.g., [3],
[4], [7], [15], [23], [25], [26], and the references therein). For example, in non-
centrosymmetric micropolar materials the propagation of left-handed and
right-handed elastic waves is observed. Moreover, the twisting behaviour
under an axial stress is a purely hemitropic (chiral) phenomenon and has
no counterpart in classical elasticity. Such solids are called hemitropic non-
centrosymmetric, acentric, or chiral. Throughout the paper we use the term
hemitropic.

Hemitropic solids are not isotropic with respect to inversion, i.e., they
are isotropic with respect to all proper orthogonal transformations but not
with respect to mirror reflections.

Materials may exhibit chirality on the atomic scale, as in quartz and in
biological molecules - DNA, as well as on a large scale, as in composites with
helical or screw–shaped inclusions, certain types of nanotubes, fabricated
structures such as foams, chiral sculptured thin films and twisted fibers. For
more details see the references [3], [4], [14], [15], [20], [23], [24], [26]–[30],
[34], [35], [46]–[50], [53], [56], [57].

Mathematical models describing the chiral properties of elastic hemitropic
materials have been proposed by Aéro and Kuvshinski [3], [4] (for historical
notes see also [14], [15], [46], and the references therein).

In the present paper we deal with the model of micropolar elasticity for
hemitropic solids when the thermal effects are taken into consideration.

In the mathematical theory of hemitropic thermoelasticity there are in-
troduced the asymmetric force stress tensor and couple stress tensor, which
are kinematically related with the asymmetric strain tensor, torsion (cur-
vature) tensor and the temperature function via the constitutive equations.
All these quantities along with the heat flux vector are expressed in terms of
the components of the displacement and microrotation vectors, and the tem-
perature function. In turn, the displacement and microrotation vectors, and
the temperature satisfy a coupled complex system of second order partial
differential equations of dynamics. When the mechanical and thermal char-
acteristics (displacements, microrotations, temperature, body force, body
couple vectors, and heat source) do not depend on the time variable t we
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have the differential equations of statics. If time dependence is harmonic
(i.e., the pertinent fields are represented as the product of the time depen-
dent exponential function exp{−iσt} and a function of the spatial variable
x ∈ R3) then we have the steady state oscillation equations. Here σ is a real
frequency parameter. Note that if σ = 0, then we obtain the equations of
statics. If σ = σ1 + iσ2 is a complex parameter, then we have the so called
pseudo-oscillation equations (which are related to the dynamical equations
via the Laplace transform). All the above equations generate a strongly
elliptic, formally non-self-adjoint 7× 7 matrix differential operator.

The Dirichlet, Neumann and mixed type boundary value problems (BVP)
corresponding to this model are well investigated for homogeneous bodies
of arbitrary shape and the uniqueness and existence theorems are proved,
and regularity results for solutions are established by the potential method,
as well as by variational methods (see [39]–[43] and the references therein).

The main goal of our investigation is to study the Dirichlet and Neumann
type transmission and interface crack problems of the theory of elasticity
with regard to thermal effects for piecewise homogeneous hemitropic com-
posite bodies of arbitrary geometrical shape. We develop the boundary
integral equations method to obtain the existence and uniqueness results in
various Hölder (Ck,α), Sobolev–Slobodetski (W s

p ) and Besov (Bs
p,q) func-

tional spaces. We study regularity properties of solutions at the crack edges
and characterize the corresponding stress singularity exponents.

2. Field Equations

2.1. Constitutive relations and basic differential equations. Denote
by R3 the three-dimensional Euclidean space and let Ω+ ⊂ R3 be a bounded
domain with a boundary S := ∂Ω+, Ω+ = Ω+ ∪ S. Further, let Ω− =
R3 \ Ω+. We assume that Ω ∈ {Ω+,Ω−} is filled with an elastic material
possessing the hemitropic properties.

Denote by u = (u1, u2, u3)> and ω = (ω1, ω2, ω3)> the displacement
vector and the microrotation vector, respectively. By ϑ we denote the tem-
perature increment – temperature distribution function. Here and in what
follows the symbol (·)> denotes transposition. Note that the microrotation
vector in the hemitropic elasticity theory is kinematically distinct from the
macrorotation vector 1

2 curl u.
Throughout the paper the central dot denotes the real scalar product,

i.e., a · b :=
N∑

k=1

akbk for complex-valued N -dimensional vectors a, b ∈ CN .

The force stress {τpq} and the couple stress {µpq} tensors in the lin-
ear theory of hemitropic thermoelasticity read as follows (the constitutive
equations)

τpq = τpq(U) := (µ + α)∂puq + (µ− α)∂qup + λδpq div u + δδpq div ω+
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+(κ + ν)∂pωq + (κ − ν)∂qωp − 2α

3∑

k=1

εpqkωk − δpqηϑ, (2.1)

µpq = µpq(U) := δδpq div u + (κ + ν)
[
∂puq −

3∑

k=1

εpqkωk

]
+ βδpq div ω+

+(κ−ν)
[
∂qup−

3∑

k=1

εqpkωk

]
+(γ + ε)∂pωq+(γ − ε)∂qωp−δpqζϑ, (2.2)

where U = (u, ω, ϑ)>, δpq is the Kronecker delta, εpqk is the permutation
(Levi–Civitá) symbol, and α, β, γ, δ, λ, µ, ν, κ, and ε are the material
constants, while η > 0 and ζ > 0 are constants describing the coupling of
mechanical and thermal fields (see [3], [14]), ∂ = (∂1, ∂2, ∂3), ∂j = ∂/∂xj ,
j = 1, 2, 3.

The linear equations of dynamics of the thermoelasticity theory of hemi-
tropic materials have the form (see, e.g., [14])

3∑
p=1

∂pτpq(x, t) + %Fq(x, t) = %∂2
ttuq(x, t), q = 1, 2, 3,

3∑
p=1

∂pµpq(x, t)+
3∑

l,r=1

εqlrτlr(x, t)+%Gq(x, t) = I∂2
ttωq(x, t), q = 1, 2, 3,

κ′∆ϑ(x, t)−η∂t div u(x, t)−ζ∂t div ω(x, t)−κ′′∂tϑ(x, t) + Q(x, t) = 0,

where t is the time variable, ∂t = ∂/∂t, F = (F1, F2, F3)> and G =
(G1, G2, G3)> are the body force and body couple vectors per unit volume,
Q is the heat source density, % is the mass density of the elastic material,
and I is a constant characterizing the so called spin torque corresponding
to the microrotations (i.e., the moment of inertia per unit volume); here
κ′ = λ0

T0
and κ′′ = c0

T0
, where λ0 > 0 is the heat conduction coefficient,

T0 > 0 is an initial natural state temperature and c0 > 0 is the specific heat
coefficient.

Using the relations (2.1)–(2.2) we can rewrite the above dynamic equa-
tions as

(µ + α)∆u(x, t) + (λ + µ− α) grad div u(x, t) + (κ + ν)∆ω(x, t)+

+(δ + κ − ν) grad div ω(x, t) + 2α curl ω(x, t)−
−η gradϑ(x, t) + %F (x, t) = %∂2

ttu(x, t),

(κ + ν)∆u(x, t) + (δ + κ − ν) grad div u(x, t) + 2α curl u(x, t)+

+(γ + ε)∆ω(x, t) + (β + γ − ε) grad div ω(x, t) + 4ν curl ω(x, t)−
−4αω(x, t)− ζ gradϑ(x, t) + %G(x, t) = I∂2

ttω(x, t),

κ′∆ϑ(x, t)−η∂t div u(x, t)−ζ∂t div ω(x, t)−κ′′∂tϑ(x, t) + Q(x, t)= 0,

where ∆ is the Laplace operator.
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If all the quantities involved in these equations are harmonic time de-
pendent, i.e., u(x, t) = u(x)e−itσ, ω(x, t) = ω(x)e−itσ, ϑ(x, t) = ϑ(x)e−itσ,
F (x, t) = F (x)e−itσ, G(x, t) = G(x)e−itσ and Q(x, t) = Q(x)e−itσ with
σ ∈ R and i =

√−1, we obtain the steady state oscillation equations of the
hemitropic theory of thermoelasticity:

(µ + α)∆u(x) + (λ + µ− α) grad div u(x) + %σ2u(x)+

+(κ + ν)∆ω(x) + (δ + κ − ν) grad div ω(x) + 2α curlω(x)−
−η gradϑ(x) = −%F (x),

(κ + ν)∆u(x) + (δ + κ − ν) grad div u(x) + 2α curlu(x)+

+(γ + ε)∆ω(x) + (β + γ − ε) grad div ω(x) + 4ν curlω(x)−
−ζ grad ϑ(x) + (Iσ2 − 4α)ω(x) = −%G(x),

(κ′∆ + iσκ′′)ϑ(x) + iησ div u(x) + iζσ div ω(x) = −Q(x),

(2.3)

here u, ω, F , and G are complex-valued vector functions, while ϑ and Q are
complex-valued scalar functions, and σ is a frequency parameter.

If σ = σ1 + iσ2 is a complex parameter with σ2 6= 0, then the above
equations are called the pseudo–oscillation equations, while for σ = 0 they
represent the equilibrium equations of statics.

Let us introduce the block wise 7× 7 matrix differential operator corre-
sponding to the system (2.3):

L(∂, σ) :=




L(1)(∂, σ) L(2)(∂, σ) L(5)(∂, σ)
L(3)(∂, σ) L(4)(∂, σ) L(6)(∂, σ)
L(7)(∂, σ) L(8)(∂, σ) L(9)(∂, σ)




7×7

, (2.4)

where

L(1)(∂, σ) :=
[
(µ + α)∆ + %σ2

]
I3 + (λ + µ− α)Q(∂),

L(2)(∂, σ) = L(3)(∂, σ) := (κ + ν)∆I3 + (δ + κ − ν)Q(∂) + 2αR(∂),

L(4)(∂, σ) := [(γ + ε)∆ + (Iσ2 − 4α)]I3 + (β + γ − ε)Q(∂) + 4νR(∂),

L(5)(∂, σ) := −η∇>, L(6)(∂, σ) := −ζ∇>, L(7)(∂, σ) := iησ∇,

L(8)(∂, σ) := iζσ∇, L(9)(∂, σ) := κ′∆ + iσκ′′.

Here and in the sequel Ik stands for the k × k unit matrix and

R(∂) := [−εkjl∂l]3×3, Q(∂) := [∂k∂j ]3×3, ∇ := [∂1, ∂2, ∂3]. (2.5)

Throughout the paper summation over repeated indexes is meant from one
to three if not otherwise stated. It is easy to see that for v = (v1, v2, v3)>

R(∂)v = curl v, Q(∂)v = grad div v, (2.6)

R(−∂) = −R(∂) = [R(∂)]>, Q(∂)R(∂) = R(∂)Q(∂) = 0,

Q(∂) = [Q(∂)]>, [R(∂)]2 = Q(∂)−∆I3, [Q(∂)]2 = Q(∂)∆.
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Due to the above notation, the system (2.3) can be rewritten in matrix
form as

L(∂, σ)U(x) = Φ(x), U = (u, ω, ϑ)>, Φ = (−%F,−%G,−Q)>.

Note that L(∂, σ) is not formally self-adjoint. Further, let us remark that
the differential operator

L(∂) := L(∂, 0) (2.7)
corresponds to the static equilibrium case, while the formally self-adjoint
differential operator

L0(∂) :=




L
(1)
0 (∂) L

(2)
0 (∂) [0]3×1

L
(3)
0 (∂) L

(4)
0 (∂) [0]3×1

[0]1×3 [0]1×3 κ′∆




7×7

(2.8)

with

L
(1)
0 (∂) := (µ + α)∆I3 + (λ + µ− α)Q(∂),

L
(2)
0 (∂) = L

(3)
0 (∂) := (κ + ν)∆I3 + (δ + κ − ν)Q(∂),

L
(4)
0 (∂) := (γ + ε)∆I3 + (β + γ − ε)Q(∂),

represents the principal homogeneous part of the operators (2.4) and (2.7).
Denote

L̃(∂, σ) :=
[
L(1)(∂, σ) L(2)(∂, σ)
L(3)(∂, σ) L(4)(∂, σ)

]

6×6

,

L̃0(∂) :=

[
L

(1)
0 (∂) L

(2)
0 (∂)

L
(3)
0 (∂) L

(4)
0 (∂)

]

6×6

.

(2.9)

The operators (2.9) correspond to the equations of hemitropic elasticity
when thermal effects are not taken into consideration ([40]). It is clear that
the operator L0(∂), L̃(∂, σ) and L̃0(∂) are formally self-adjoint.

2.2. Generalized stress operators. The components of the force stress
vector τ (n) and the couple stress vector µ(n), acting on a surface element
with a unite normal vector n = (n1, n2, n3), read as

τ (n) =
(
τ

(n)
1 , τ

(n)
2 , τ

(n)
3

)>
, µ(n) =

(
µ

(n)
1 , µ

(n)
2 , µ

(n)
3

)>
,

where

τ (n)
q =

3∑
p=1

τpqnp, µ(n)
q =

3∑
p=1

µpqnp, q = 1, 2, 3.

It is also well known that the normal component of the heat flux vector
across a surface element with a normal vector n = (n1, n2, n3) is expressed
with the help of the normal derivative of the temperature function

κ′n · ∇ϑ = κ′
3∑

p=1

np∂pϑ = κ′∂nϑ,
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where ∂n = ∂/∂n denotes the usual normal derivative.
Throughout the paper we will refer the six vector (τ (n), µ(n))> as the

mechanical thermo-stress vector, while the seven vector (τ (n), µ(n), κ′∂nϑ)>

as the generalized thermo-stress vector.
Let us introduce the generalized thermo-stress operators

T (∂, n) =
[
T (1)(∂, n) T (2)(∂, n) −ηn>

T (3)(∂, n) T (4)(∂, n) −ζn>

]

6×7

, (2.10)

P(∂, n) =




T (1)(∂, n) T (2)(∂, n) −ηn>

T (3)(∂, n) T (4)(∂, n) −ζn>

[0]1×3 [0]1×3 κ′∂n




7×7

, (2.11)

where

T (j) = [T (j)
pq ]3×3, j = 1, 4, n> = (n1, n2, n3)>,

T (1)
pq (∂, n) = (µ + α)δpq∂n + (µ− α)nq∂p + λnp∂q,

T (2)
pq (∂, n) = (κ + ν)δpq∂n + (κ − ν)nq∂p + δnp∂q − 2α

3∑

k=1

εpqknk,

T (3)
pq (∂, n) = (κ + ν)δpq∂n + (κ − ν)nq∂p + δnp∂q,

T (4)
pq (∂, n) = (γ + ε)δpq∂n + (γ − ε)nq∂p + βnp∂q − 2ν

3∑

k=1

εpqknk.

One can easily check that for an arbitrary vector U = (u, ω, ϑ)>,

T (∂, n)U =
(
τ (n), µ(n)

)>
, P(∂, n)U =

(
τ (n), µ(n), κ′∂nϑ

)>
,

i.e., the six vector T (∂, n)U corresponds to the mechanical thermo-stress
vector and the seven vector P(∂, n)U corresponds to the generalized thermo-
stress vector.

Further, let us introduce the boundary differential operators which occur
in Green’s formulas and are associated with the adjoint differential operator
L∗(∂, σ) := L>(−∂, σ):

T ∗(∂, n) =
[
T (1)(∂, n) T (2)(∂, n) −iσηn>

T (3)(∂, n) T (4)(∂, n) −iσζn>

]

6×7

,

P∗(∂, n) =




T (1)(∂, n) T (2)(∂, n) −iσηn>

T (3)(∂, n) T (4)(∂, n) −iσζn>

[0]1×3 [0]1×3 κ′∂n




7×7

.

(2.12)

It is easy to see that the principal homogeneous parts of the operators
T (∂, n) and T ∗(∂, n) are the same, as well as the principal homogeneous
parts of the operators P(∂, n) and P∗(∂, n).
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Note that when the thermal effects are not taken into consideration the
hemitropic stress operator reads as [40]

T (∂, n) =
[
T (1)(∂, n) T (2)(∂, n)
T (3)(∂, n) T (4)(∂, n)

]

6×6

. (2.13)

Evidently, for U = (u, ω, 0)> and Ũ = (u, ω)> we have T (∂, n)U = T (∂, n)Ũ
in view of (2.10) and (2.13).

2.3. Green’s identities. For vector functions

Ũ = (u, ω)>, Ũ ′ = (u′, ω′)> ∈ [C2(Ω+)]6,

we have the following Green formula [40]
∫

Ω+

[
Ũ ′ · L̃(∂, 0)Ũ + E(Ũ ′, Ũ)

]
dx =

∫

∂Ω+

{Ũ ′}+ · {T (∂, n)Ũ}+ dS, (2.14)

where the operators L̃(∂, 0) and T (∂, n) are given by (2.9) and (2.13) respec-
tively, ∂Ω+ is a piecewise smooth manifold, n is the outward unit normal
vector to ∂Ω+, the symbols { · }± denote the limiting values on ∂Ω± from
Ω± respectively, E(· , ·) is the so called energy bilinear form,

E(Ũ ′, Ũ) = E(Ũ , Ũ ′) =
3∑

p,q=1

{
(µ + α)u′pqupq + (µ− α)u′pquqp+

+ (κ+ν)(u′pqωpq+ω′pqupq)+(κ−ν)(u′pqωqp+ω′pquqp)+(γ+ε)ω′pqωpq+

+ (γ − ε)ω′pqωqp + δ(u′ppωqq + ω′qqupp) + λu′ppuqq + βω′ppωqq

}
(2.15)

with

upq = ∂puq −
3∑

k=1

εpqkωk, ωpq = ∂pωq, p, q = 1, 2, 3. (2.16)

In what follows the over bar denotes complex conjugation. The necessary
and sufficient conditions for the quadratic form E(Ũ , Ũ) to be positive def-
inite with respect to the variables upq and ωpq, read as (see [4], [14], [18])

µ > 0, α > 0, γ > 0, ε > 0, λ + 2µ > 0, µγ − κ2 > 0, αε− ν2 > 0,

(λ + µ)(β + γ)− (δ + κ)2 > 0, (3λ + 2µ)(3β + 2γ)− (3δ + 2κ)2 > 0,

(µ + α)(γ + ε)− (κ + ν)2 > 0, (λ + 2µ)(β + 2γ)− (δ + 2κ)2 > 0,

µ
[
(λ + µ)(β + γ)− (δ + κ)2

]
+ (λ + µ)(µγ − κ2) > 0,

µ
[
(3λ + 2µ)(3β + 2γ)− (3δ + 2κ)2

]
+ (3λ + 2µ)(µγ − κ2) > 0.

Let us note that, if the condition 3λ + 2µ > 0 is fulfilled, which is very
natural in the classical elasticity, then the above conditions are equivalent
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to the following simultaneous inequalities

µ > 0, α > 0, γ > 0, ε > 0, 3λ + 2µ > 0, µγ − κ2 > 0,

αε− ν2 > 0, (µ + α)(γ + ε)− (κ + ν)2 > 0,

(3λ + 2µ)(3β + 2γ)− (3δ + 2κ)2 > 0.

(2.17)

For simplicity in what follows we assume that 3λ+2µ > 0 and therefore the
conditions (2.17) imply positive definiteness of the energy quadratic form

E(Ũ , Ũ) defined by (2.15). From (2.17) it follows that

γ > 0, ε > 0, λ + µ > 0, β + γ > 0,

d1 := (µ + α)(γ + ε)− (κ + ν)2 > 0,

d2 := (λ + 2µ)(β + 2γ)− (δ + 2κ)2 > 0.

Formula (2.15) can be rewritten as

E(Ũ , Ũ ′) =
3λ+2µ

3

(
div u+

3δ+2κ
3λ+2µ

div ω
)(

div u′ +
3δ+2κ
3λ+2µ

div ω′
)
+

+
1
3

(
3β + 2γ − (3δ+2κ)2

3λ+2µ

)
(div ω)(div ω′)+

+
(
ε− ν2

α

)
curlω · curl ω′+

+
µ

2

3∑

k,j=1, k 6=j

[
∂uk

∂xj
+

∂uj

∂xk
+
κ
µ

(∂ωk

∂xj
+

∂ωj

∂xk

)]
×

×
[
∂u′k
∂xj

+
∂u′j
∂xk

+
κ
µ

(∂ω′k
∂xj

+
∂ω′j
∂xk

)]
+

+
µ

3

3∑

k,j=1

[
∂uk

∂xk
− ∂uj

∂xj
+
κ
µ

(∂ωk

∂xk
− ∂ωj

∂xj

)]
×

×
[
∂u′k
∂xk

− ∂u′j
∂xj

+
κ
µ

(∂ω′k
∂xk

− ∂ω′j
∂xj

)]
+

+
(
γ − κ

2

µ

) 3∑

k,j=1, k 6=j

[
1
2

(∂ωk

∂xj
+

∂ωj

∂xk

)(∂ω′k
∂xj

+
∂ω′j
∂xk

)
+

+
1
3

(∂ωk

∂xk
− ∂ωj

∂xj

)(∂ω′k
∂xk

− ∂ω′j
∂xj

)]
+

+ α
(

curlu+
ν

α
curlω−2ω

)
·
(

curl u′+
ν

α
curlω′−2ω′

)
.

In particular,

E(Ũ , Ũ) =
3λ + 2µ

3

∣∣∣ div u +
3δ + 2κ
3λ + 2µ

div ω
∣∣∣
2

+

+
1
3

(
3β + 2γ − (3δ + 2κ)2

3λ + 2µ

)
| div ω|2+
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+
µ

2

3∑

k,j=1, k 6=j

∣∣∣∣
∂uk

∂xj
+

∂uj

∂xk
+
κ
µ

(∂ωk

∂xj
+

∂ωj

∂xk

)∣∣∣∣
2

+

+
µ

3

3∑

k,j=1

∣∣∣∣
∂uk

∂xk
− ∂uj

∂xj
+
κ
µ

(∂ωk

∂xk
− ∂ωj

∂xj

)∣∣∣∣
2

+

+
(
γ−κ

2

µ

) 3∑

k,j=1, k 6=j

[
1
2

∣∣∣∂ωk

∂xj
+

∂ωj

∂xk

∣∣∣
2

+
1
3

∣∣∣∂ωk

∂xk
− ∂ωj

∂xj

∣∣∣
2
]
+

+
(
ε− ν2

α

)
| curl ω|2 + α

∣∣∣ curl u +
ν

α
curl ω − 2ω

∣∣∣
2

.

We formulate here the following technical lemma.

Lemma 2.1. Let Ũ = (u, ω)> ∈ [C1(Ω+)]6 and E(Ũ , Ũ) = 0 in Ω+.
Then

u(x) = [a× x] + b, ω(x) = a, x ∈ Ω+, (2.18)
where a and b are arbitrary three-dimensional constant complex vectors.

Moreover,
(i) for an arbitrary vector Ũ = (u, ω)> defined by formulas (2.18) and

an arbitrary unit vector n = (n1, n2, n3) the generalized hemitropic
stress vector T (∂, n)Ũ vanishes identically, i.e., T (∂, n)Ũ(x) = 0
for all x ∈ Ω+.

(ii) for an arbitrary vector U := (Ũ , 0)> = (u, ω, 0)>, where u and ω
are given by formulas (2.18), and for an arbitrary unit vector n =
(n1, n2, n3) the generalized hemitropic thermo-stress vector P(∂, n)U
vanishes identically, i.e., P(∂, n)U(x) = 0 for all x ∈ Ω+.

Proof. The first part of the lemma is shown in [40]. The second part easily
follows from the first part and from the formulas (2.10), (2.11), (2.13). ¤

Throughout the paper Lp, W s
p , Hs

p , and Bs
p,q (with s ∈ R, 1 < p < ∞,

1 ≤ q ≤ ∞) denote the well–known Lebesgue, Sobolev–Slobodetski, Bessel
potential, and Besov spaces, respectively (see, e.g., [54], [55], [31]). We
recall that Hs

2 = W s
2 = Bs

2,2, W t
p = Bt

p,p, and Hk
p = W k

p , for any s ∈ R, for
any positive and non-integer t, and for any non-negative integer k.

Further, let M0 be a Lipschitz surface without boundary. For a Lipschitz
sub-manifold M ⊂ M0 we denote by H̃s

p(M) and B̃s
p,q(M) the subspaces

of Hs
p(M0) and Bs

p,q(M0), respectively,

H̃s
p(M) =

{
g : g ∈ Hs

p(M0), supp g ⊂M
}

,

B̃s
p,q(M) =

{
g : g ∈ Bs

p,q(M0), supp g ⊂M
}

,

while Hs
p(M) and Bs

p,q(M) denote the spaces of restrictions on M of func-
tions from Hs

p(M0) and Bs
p,q(M0), respectively,

Hs
p(M) =

{
rMf : f ∈ Hs

p(M0)
}
, Bs

p,q(M) =
{
rMf : f ∈ Bs

p,q(M0)
}
.
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Here rM is the restriction operator.
If Ũ = Ũ (1)+iŨ (2) is a complex–valued vector, where Ũ (j) = (u(j), ω(j))>

(j = 1, 2) are real–valued vectors, then

E(Ũ , Ũ) = E(Ũ (1), Ũ (1)) + E(Ũ (2), Ũ (2)),

and, due to the positive definiteness of the energy form for real–valued
vector functions, we have

E(Ũ , Ũ) ≥ c∗
3∑

p,q=1

[
(u(1)

pq )2 + (u(2)
pq )2 + (ω(1)

pq )2 + (ω(2)
pq )2

]
,

where c∗ is a positive constant depending only on the material constants,
and u

(j)
pq and ω

(j)
pq are defined by formulae (2.16) with u(j) and ω(j) for u

and ω.
From the positive definiteness of the energy form E(·, ·) with respect to

the variables (2.16) it follows that there exist positive constants c1 and c2

such that for an arbitrary real–valued vector Ũ ∈ [C1(Ω+)]6

B̃(Ũ , Ũ) :=
∫

Ω+

E(Ũ , Ũ) dx ≥

≥ c1

∫

Ω+

{ 3∑
p,q=1

[
(∂puq)2 + (∂pωq)2

]
+

3∑
p=1

[u2
p + ω2

p]
}

dx−

−c2

∫

Ω+

3∑
p=1

[u2
p + ω2

p] dx,

i.e., the following Korn’s type inequality holds (cf. [17, Part I, § 12], [32,
Ch. 10])

B̃(Ũ , Ũ) ≥ c1‖Ũ‖2[H1
2 (Ω+)]6 − c2‖Ũ‖2[H0

2 (Ω+)]6 , (2.19)

where ‖ · ‖[Hs
2 (Ω+)]6 denotes the norm in the Sobolev space [Hs

2(Ω+)]6.
Clearly, the counterpart of (2.19) holds for an arbitrary complex-valued
vector Ũ ∈ [H1

2 (Ω+)]6 as well,

B̃(Ũ , Ũ) ≥ c1‖Ũ |2[H1
2 (Ω+)]6 − c2‖Ũ‖2[H0

2 (Ω+)]6 . (2.20)

These results imply that the differential operators L̃(∂, σ) and L̃0(∂) are
strongly elliptic and the following inequality (the accretivity condition) holds
(cf., e.g., [17, Part I, § 5], [32, Ch. 4, Lemma 4.5])

c′2|ξ|2|η|2 ≥ L̃0(ξ)η · η =
6∑

k,j=1

L̃0kj(ξ)ηjηk ≥ c′1|ξ|2|η|2 (2.21)

with some constants c′k > 0, k = 1, 2, for arbitrary ξ ∈ R3 and arbitrary
complex vector η ∈ C6.
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Consequently, in view of (2.8) and (2.21) the differential operator L(∂, σ)
is strongly elliptic as well, since

C ′2|ξ|2|η|2 ≥ L0(ξ)η · η =
6∑

k,j=1

L0kj(ξ)ηjηk ≥ C ′1|ξ|2|η|2

with some constants C ′k > 0, k = 1, 2, for arbitrary ξ ∈ R3 and for arbitrary
complex vector η ∈ C7.

Now let U = (Ũ , ϑ)> = (u, ω, ϑ)> and U ′ = (Ũ ′, ϑ′)> = (u′, ω′, ϑ′)> be
vector functions of the class [C2(Ω+)]7. With the help of relation (2.14) and
standard manipulations we can show that the following Green’s formulas
hold ∫

Ω+

U ′ · L(∂, σ)U dx =
∫

∂Ω+

{U ′}+ · {P(∂, n)U
}+

dS−

−
∫

Ω+

[
E(Ũ ′, Ũ)− %σ2u′ · u− Iσ2ω′ · ω − ηϑ div u′ − ζϑ div ω′−

−iησϑ′ div u− iζσϑ′ div ω − iσκ′′ϑϑ′ + κ′ grad ϑ′ · gradϑ
]
dx, (2.22)

∫

Ω+

[
U ′ · L(∂, σ)U − L∗(∂, σ)U ′ · U

]
dx =

=
∫

∂Ω+

[
{U ′}+ · {P(∂, n)U

}+ − {P∗(∂, n)U ′}+ · {U}+
]
dS, (2.23)

where L∗(∂, σ) = L>(−∂, σ) is the operator formally adjoint to L(∂, σ),
the differential operators L(∂, σ), P(∂, n) and P∗(∂, n) are defined by (2.4),
(2.11) and (2.12) respectively. The proof of (2.22) and (2.23) easily follows
from (2.14) in view of the identity

U ′ · L(∂, σ)U − Ũ ′ · L̃(∂, 0)Ũ = %σ2u′ · u− η gradϑ · u′ + Iσ2ω′ · ω−
− ζ gradϑ · ω′ + κ′ϑ′∆ϑ + iησϑ′ div u + iσζϑ′ div ω + iσκ′′ϑϑ′.

By the standard limiting approach, Green’s formula (2.22) can be extended
to Lipschitz domains (see, e.g., [45], [32]) and to the case of complex–valued
vector functions U ∈ [W 1

p (Ω+)]7 and U ′ ∈ [W 1
p′(Ω

+)]7 with 1/p + 1/p′ = 1,
1 < p < ∞, and L(∂, σ)U ∈ [Lp(Ω+)]7 (cf. [31], [10], [32])

〈
{U ′}+,

{P(∂, n)U
}+

〉
∂Ω+

=
∫

Ω+

U ′ · L(∂, σ)U dx+

+
∫

Ω+

[
E(Ũ ′, Ũ)− %σ2u′ · u− Iσ2ω′ · ω − ηϑ div u′ − ζϑ div ω′−

− iησϑ′ div u− iζσϑ′ div ω − iσκ′′ϑϑ′ + κ′ gradϑ′ · gradϑ
]
dx, (2.24)
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where 〈 · , · 〉∂Ω+ denotes the duality between the spaces [B
1
p
p,p(∂Ω+)]7 and

[B
− 1

p

p′,p′(∂Ω+)]7, which extends the usual real L2-scalar product, i.e., for
f, g ∈ [L2(S)]7

〈f, g〉S =
7∑

k=1

∫

S

fkgk dS = (f, g)[L2(S)]7 .

Clearly, the generalized trace functional {P(∂, n)U}+ ∈ [B
− 1

p
p,p (∂Ω+)]7 is

well defined by the relation (2.24).
Let us introduce the sesquilinear form related to the operator L(∂, σ)

B(U,U ′) :=
∫

Ω+

[
E(Ũ , Ũ ′)−%σ2u · u′−Iσ2ω · ω′−ηϑ div u′−ζϑ div ω′−

− iησϑ′ div u− iζσϑ′ div ω − iσκ′′ϑϑ′ + κ′ gradϑ · grad ϑ′
]
dx. (2.25)

With the help of (2.20) and (2.25) we derive the inequality

ReB(U,U) ≥ C1‖U‖2[H1
2 (Ω+)]7 − C2‖U‖2[H0

2 (Ω+)]7 , (2.26)

with some positive constants C1 and C2. This inequality plays a crucial role
in the study of boundary value problems of the micropolar elasticity theory
for hemitropic continua by means of the variational methods based on the
well known Lax–Milgram theorem.

3. Formulation of Transmission Problems and Uniqueness
Theorems

Let Ω be a bounded region in R3 with the smooth connected boundary
∂Ω = S0. Let Ω1 ⊂ Ω be a sub-domain of Ω with a smooth simply connected
boundary ∂Ω1 = S1 ⊂ Ω. Put Ω0 := Ω \ Ω1. In what follows, by n(z),
z ∈ S0 ∪ S1, we denote the outward unit normal vector with respect to the
domains Ω1 and Ω, at the point z. We assume that S` ∈ C2,γ′ , 0 < γ′ ≤ 1,
` = 0, 1, if not otherwise stated. Let the domains Ω` be filled up by elastic
continua heaving different hemitropic material constants, α(`), β(`), γ(`),
δ(`), λ(`), µ(`), ν(`), κ(`) and ε(`), ` = 0, 1; η(`) > 0 and ζ(`) > 0, ` = 0, 1,
are constants describing the coupling of mechanical and thermal fields in Ω`

(see [3], [14]), ∂ = (∂1, ∂2, ∂3), ∂j = ∂/∂xj , j = 1, 2, 3.
Analogously, for the mechanical characteristics, e.g., the displacement

and microrotation vectors, the force stress and couple stress vectors, and
also for the differential operators, fundamental matrices and potentials re-
lated to the hemitropic material occupying the domain Ω`, ` = 0, 1, we
also employ the superscript (`). In particular, u(`) = (u(`)

1 , u
(`)
2 , u

(`)
3 )T ,

ω(`) = (ω(`)
1 , ω

(`)
2 , ω

(`)
3 )T and ϑ(`) denote the displacement and microrotation

vectors and temperature function in the domain Ω`; E(`)(U (`), U (`)) desig-
nates the appropriate potential energy density, L(`)(∂, σ), L(`)(∂), L

(`)
0 (∂),
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P(`)(∂, n) and P(`)
0 (∂, n) are the corresponding differential operators given

by the formulae (2.4), (2.7), (2.8), (2.5) and (2.6).
In what follows we treat transmission problems for the differential equa-

tions of pseudo-oscillations, i.e., we assume that

σ = σ1 + iσ2 with σ2 > 0. (3.1)

It is clear that the nonhomogeneous differential equation L(`)(∂, σ)U (`) =
Ψ(`) in Ω` we can reduce to the homogeneous one, L(`)(∂, σ)V (`) = 0, with
the help of the volume Newtonian potential NΩ`

(Ψ(`)) (see Appendix A).
Therefore, without loss of generality we can assume that the body force and
body couple vectors absent.

We will study the following boundary-transmission problems:

Find regular complex-valued vector-functions U (`) ∈ [C1(Ω`)]7 ∩ [C2(Ω`)]7,
` = 0, 1, satisfying the differential equations

L(`)(∂, σ)U (`)(x) = 0 in Ω`, ` = 0, 1, (3.2)

the transmission conditions on S1

{U (1)(z)}+ − {U (0)(z)}− = f(z) on S1, (3.3)

{P(1)(∂, n)U (1)(z)
}+ − {P(0)(∂, n)U (0)(z)

}− = F (z) o S1, (3.4)

and either the Dirichlet boundary condition on S0

{U (0)(z)}+ = f (D)(z) n S0, (3.5)

or the Neumann boundary condition on S0

{P(0)(∂, n)U (0)(z)
}+ = F (N)(z) on S0. (3.6)

We assume that the given transmission and boundary data are complex-
valued vectors and

f ∈ [C1,β′(S0)]7, F ∈ [C0,β′(S0)]7,

f (D) ∈ [C1,β′(S1)]7, F (N) ∈ [C0,β′(S1)]7,

with 0 < β′ < γ′ ≤ 1. We refer to the boundary-transmission problem (3.2)–
(3.5) as Problem (TD) and the boundary-transmission problem (3.2)–(3.4)
and (3.6) as Problem (TN).

The above problem setting is a classical one in the space of continuously
differentiable vector-functions.

In the case of a weak setting of the problems we look for a solution
pair (U (0), U (1)) in the Sobolev spaces, U (`) ∈ [W 1

p (Ω`)]7, ` = 0, 1, with
L(`)(∂, σ)U (`) ∈ [Lp(Ω`)]7. Therefore, equations (3.2) are understood in the
distributional sense. However, we remark that solutions to these homoge-
neous equations actually are analytical vector-functions of the real spatial
variable x in the open domains Ω0 and Ω1, since the differential operators
L(`)(∂, σ) are strongly elliptic.
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The Dirichlet type boundary and transmission conditions are understood
in the usual trace sense, while the Neumann type conditions are understood
in the generalized trace sense defined by Green’s identity (2.24) (for details
see [37], [42]).

We start with the study of uniqueness of solutions to these problems.

Theorem 3.1. Problems (TD) and (TN) may have at most one solution
in the space of regular vector-functions.

Proof. Due to linearity of the problems under consideration, it suffices to
show that the corresponding homogeneous problems have only the trivial
solutions. Let a pair of regular vectors

(U (0), U (1)) ∈ (
[C1(Ω0)]7 ∩ [C2(Ω0)]7

)× (
[C1(Ω1)]7 ∩ [C2(Ω1)]7

)

be a solution of either the homogeneous Problem (TD) or Problem (TN).
Using Green’s formulae for the vector-functions U (0) and U (1) and taking
into account the chosen direction of the normal vector on the boundaries
S0 and S1, we get
∫

Ω1

[
−E(1)

(
Ũ (1), Ũ (1)

)
+%1σ

2|u(1)|2+I1σ
2|ω(1)|2−C0κ

′
1|∇ϑ(1)|2−κ′′1 |ϑ(1)|2

]
dx+

+
∫

S1

{
T (1)(∂, n)U (1) · Ũ (1)+C0κ

′
1ϑ

(1)∂nϑ(1)
}+

dS =0, (3.7)

∫

Ω0

[
−E(0)

(
Ũ (0), Ũ (0)

)
+%0σ

2|u(0)|2+I0σ
2|ω(0)|2−C0κ

′
0|∇ϑ(0)|2−κ′′0 |ϑ(0)|2

]
dx+

+
∫

S0

{
T (0)(∂, n)U (0) · Ũ (0) + C0κ

′
0ϑ

(0)∂nϑ(0)
}+

dS−

−
∫

S1

{
T (0)(∂, n)U (0) · Ũ (0) + C0κ

′
0ϑ

(0)∂nϑ(0)
}−

dS = 0, (3.8)

where

C0 = − i

σ
, κ′` =

λ
(`)
0

T
(`)
0

, κ′′` =
c
(`)
0

T
(`)
0

, Ũ (`) = (u(`), ω(`))>, ` = 0, 1.

The homogeneous boundary and transmission conditions, f (`) = F (`) = 0,
yield

1∑

`=0

∫

Ω`

[
E(`)

(
Ũ (`), Ũ (`)

)− %`σ
2|u(`)|2 − I`σ

2|ω(`)|2+

+ C0κ
′
`|∇ϑ(`)|2 + κ′′` |ϑ(`)|2

]
dx = 0. (3.9)
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Separating the imaginary part leads to the relation

σ1

1∑

`=0

∫

Ω`

[
2σ2%`|u(`)|2 + 2σ2I`|ω(`)|2 +

κ′`
|σ|2 |∇ϑ(`)|2

]
dx = 0.

If σ1 6= 0, we then conclude u(`) = 0, ω(`) = 0, ϑ(`) = const. But from (3.9)
we have ϑ(`) = 0 and consequently U (`) = 0 in Ω`. If σ1 = 0, then from
(3.9) we have

E(`)(Ũ (`), Ũ (`)) + σ2
2%`|u(`)|2 + σ2

2I`|ω(`)|2 +
κ′`
σ2
|∇ϑ(`)|2 + κ′′` |ϑ(`)|2 = 0

for ` = 0, 1, whence u(`) = 0, ω(`) = 0, ϑ(`) = 0 in Ω` follow. ¤

By the quite similar arguments one can prove the following uniqueness
theorem for the same transmission problems in the weak formulation.

Theorem 3.2. Problems (TD) and (TN) may have at most one solution
in the space (U (0), U (1)) ∈ [W 1

2 (Ω0)]7 × [W 1
2 (Ω1)]7.

4. Existence Results for Problem (TD)

Here we develop the so called indirect boundary integral equations ap-
proach. We look for a solution pair of Problem (TD) in the form of single
layer potentials, see Appendix A,

U (1)(x) = V
(1)
S1

(
[H(1)

S1
]−1ϕ

)
(x) ≡

≡
∫

S1

Γ(1)(x− y, σ)
(
[H(1)

S1
]−1ϕ

)
(y) dSy, x ∈ Ω1, (4.1)

U (0)(x) = V
(0)
S0

(
[H(0)

S0
]−1ψ

)
(x) + V

(0)
S1

(
[H(0)

S1
]−1χ

)
(x) ≡

≡
∫

S0

Γ(0)(x− y, σ)
(
[H(0)

S0
]−1ψ

)
(y) dSy+

+
∫

S1

Γ(0)(x− y, σ)
(
[H(0)

S1
]−1χ

)
(y) dSy, x ∈ Ω0, (4.2)

where ϕ = (ϕ1, . . . , ϕ7)>, ψ = (ψ1, . . . , ψ7)> and χ = (χ1, . . . , χ7)> are
unknown densities; Γ(`)(x− y, σ) is the fundamental matrix of the operator
L(`)(∂, σ), ` = 0, 1; [H(`)

Sj
]−1 stands for the operator inverse to H(`)

Sj
, `, j =

0, 1, which is well defined due to Theorems A.5 and A.6 in Appendix A.
Recall that for the potentials and the boundary operators generated by

them, the superscript (`) shows the correspondence to the type of hemitropic
material in Ω`.

Taking into consideration the transmission and boundary conditions of
Problem (TD) and using the properties of the single-layer potentials we
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arrive at the system of boundary integral (pseudodifferential) equations:

ϕ(z)− χ(z)−
∫

S0

Γ(0)(z − y, σ)
(
[H(0)

S0
]−1ψ

)
(y) dSy = f(z), z ∈ S1,

[
(−2−1I7 +K(1)

S1
)[H(1)

S1
]−1ϕ

]
(z)−

[
(2−1I7 +K(0)

S1
)[H(0)

S1
]−1χ

]
(z)−

−
∫

S0

P(0)(∂z, n(z))Γ(0)(z − y, σ)
(
[H(0)

S0
]−1ψ

)
(y) dSy = F (z), z ∈ S1,

∫

S1

Γ(0)(z − y, σ)
(
[H(0)

S1
]−1χ

)
(y) dSy + ψ(z) = f (D)(z), z ∈ S0.

(4.3)

The operators K(`)
S`

, ` = 0, 1, are defined in Appendix A (see Theorem A.1).
Introduce the so called Steklov–Poincaré type operators

A(0)
S1

:= (2−1I7 +K(0)
S1

)[H(0)
S1

]−1, A(1)
S1

:= (−2−1I7 +K(1)
S1

)[H(1)
S1

]−1, (4.4)

and rewrite system (4.3) as

ϕ− χ− V
(0)
S0

(
[H(0)

S0
]−1ψ

)
= f on S1,

A(1)
S1

ϕ−A(0)
S1

χ−P(0)(∂z, n)V (0)
S0

(
[H(0)

S0
]−1ψ

)
= F on S1,

V
(0)
S1

([H(0)
S1

]−1χ) + ψ = f (D) on S0.

(4.5)

Denote by rΣ the restriction operator onto Σ. Clearly, the operators rS1V
(0)
S0

,

rS1P(0)V
(0)
S0

and rS0V
(0)
S1

, involved in the above equations are smoothing
operators, since the surfaces S1 and S0 are disjoint.

Denote the operator generated by the left hand side expressions in (4.5)
by D which acts on the triplet of the sought for vectors (ϕ, χ, ψ)>,

D :=




I7 −I7 −rS1V
(0)
S0

(
[H(0)

S0
]−1

)

A(1)
S1

−A(0)
S1

−rS1P(0)V
(0)
S0

(
[H(0)

S0
]−1

)

0 rS0V
(0)
S1

([H(0)
S1

]−1) I7




21×21

.

Set
Ψ = (ϕ, χ, ψ)>, Q = (f, F, f (D))>,

and rewrite (4.5) in matrix form

DΨ = Q.

Let us introduce the function spaces:

Xk,β′ := [Ck,β′(S1)]7 × [Ck,β′(S1)]7 × [Ck,β′(S0)]7,

Y k,β′ := [Ck,β′(S1)]7 × [Ck−1,β′(S1)]7 × [Ck,β′(S0)]7,

S0, S1 ∈ Ck+1,γ′ , k ≥ 1, 0 < β′ < γ′ ≤ 1,

(4.6)
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Xs
p := [Hs

p(S1)]7 × [Hs
p(S1)]7 × [Hs

p(S0)]7,

Y s
p := [Hs

p(S1)]7 × [Hs−1
p (S1)]7 × [Hs

p(S0)]7,
(4.7)

Xs
p,t := [Bs

p,t(S1)]7 × [Bs
p,t(S1)]7 × [Bs

p,t(S0)]7,

Y s
p,t := [Bs

p,t(S1)]7 × [Bs−1
p,t (S1)]7 × [Bs

p,t(S0)]7,

s ∈ R, 1 < p < ∞, 1 ≤ t ≤ ∞, S0, S1 ∈ C∞.

(4.8)

The results collected in Appendix A yield the following mapping properties:

D : Xk,β′ −→ Y k,β′ , S0, S1 ∈ Ck+1,γ′ , k ≥ 1, 0 < β′ < γ′ ≤ 1,

D : Xs
p −→ Y s

p, s ∈ R, 1 < p < ∞, S0, S1 ∈ C∞,

D : Xs
p,t −→ Y s

p,t, s ∈ R, 1 < p < ∞, 1 ≤ t ≤ ∞ S0, S1 ∈ C∞.

Further, let us introduce the operator

D̃ :=




I7 −I7 0
A(1)

S1
−A(0)

S1
0

0 0 I7




21×21

.

It is clear that D̃ has the same mapping properties as the operator D and
the operator D − D̃ with the same domain and range spaces is a compact
operator. To establish the Fredholm properties of the operator D first we
study the operator D̃.

Lemma 4.1. The operators

D̃ : Xk,β′ −→ Y k,β′ , k ≥ 1, 0 < β′ < γ′ ≤ 1, S0, S1 ∈ Ck+1,γ′ , (4.9)

D̃ : Xs
p −→ Y s

p, s ∈ R, 1 < p < ∞, S0, S1 ∈ C∞, (4.10)

D̃ : Xs
p,t −→ Y s

p,t, s ∈ R, 1 < p < ∞, 1 ≤ t ≤ ∞, S0, S1 ∈ C∞ (4.11)

are invertible.

Proof. We prove the lemma into several steps.
Step 1. First we show that the null-space of the operator (4.9) is trivial.

To this end, we have to prove that the simultaneous homogeneous equations

ϕ(z)− χ(z) = 0, z ∈ S1,

[A(1)
S1

ϕ](z)− [A(0)
S1

χ](z) = 0, z ∈ S1,

ψ(z) = 0, z ∈ S0,

(4.12)

have only the trivial solution. Since ψ = 0 on S0 it suffices to show that the
first two equations imply ϕ = χ = 0 on S1. Indeed, let ϕ and χ solve the
above homogeneous equations. Construct the single-layer potentials:

Ũ (1)(x) = V
(1)
S1

(
[H(1)

S1
]−1ϕ

)
(x), x ∈ Ω+ := Ω1,

Ũ (0)(x) = V
(0)
S1

(
[H(0)

S1
]−1χ

)
(x), x ∈ Ω− := R3 \ Ω1.

(4.13)
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From the first two equations in (4.12) and the properties of the single-layer
potentials it follows that the pair of vectors (Ũ (0), Ũ (1)) solve the basic ho-
mogeneous transmission problem for the whole space with the interface S1:

L(1)(∂, σ)Ũ (1)(x) = 0 in Ω+, L(0)(∂, σ)Ũ (0)(x) = 0 in Ω−,

{Ũ (1)(z)}+ − {Ũ (0)(z)}− = 0 on S1,
{P(1)(∂, n)Ũ (1)(z)

}+ − {P(0)(∂, n)Ũ (0)(z)
}− = 0 on S1.

Note that, if ϕ, χ ∈ [Ck,β′(S1)]7, then the corresponding single-layer poten-
tials are regular vectors in the Ω±, i.e., Ũ (1) ∈ [Ck,β′(Ω+)]7 ∩ [C∞(Ω+)]7

and Ũ (0) ∈ [Ck,β′(Ω−)]7 ∩ [C∞(Ω−)]7. We recall that the entries of the
fundamental matrix Γ(`)(x, σ) decay exponentially at infinity (see [44]), and
therefore the vector Ũ (0) and its partial derivatives decay exponentially as
|x| → +∞. It is clear that for such vectors the corresponding Green’s
formulae hold in the unbounded domain Ω− (cf. (3.7), (3.8)).

Therefore, by virtue of the homogeneous transmission conditions, as in
the proof of Theorem 3.1, we arrive at the equalities Ũ (1) = 0 in Ω+ and
Ũ (0) = 0 in Ω−, which in view of (4.13) proves that ker D̃ is trivial.

Step 2. Let us consider the vectors

U (1)(x) = V
(1)
S1

(
[H(1)

S1
]−1χ

)
(x), x ∈ Ω+,

U (0)(x) = V
(0)
S1

(
[H(0)

S1
]−1χ

)
(x), x ∈ Ω−,

(4.14)

then we have

{U (1)}+ = {U (0)}− = χ, (4.15)
{P(1)(∂, n)U (1)

}+ = A(1)
S1

χ,
{P(0)(∂, n){U (0)

}− = A(0)
S1

χ on S1.

With the help of formulae (2.24), for vectors U ′ = U (1) and U = U (1) we
have 〈

χ,A(1)
S1

χ
〉

S1

= B(1)(U (1), U (1)), (4.16)

where

B(1)(U (1), U (1)) =
∫

Ω+

[
E(1)(Ũ (1), Ũ (1)) + κ′1|∇ϑ(1)|2−

− %(1)σ2|u(1)|2 − I(1)σ2|ω(1)|2 − iσκ′′1 |ϑ(1)|2−
− ϑ(1) div

(
η(1)u(1) + ζ(1)ω(1)

)− iσϑ(1) div(η(1)u(1) + ζ(1)ω(1))
]
dx.

Quite similarly from (2.24) for vectors U ′ = U (0) and U = U (0) we derive

−
〈
χ,A(0)

S1
χ
〉

S1

= B(0)(U (0), U (0)), (4.17)

where
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B(0)(U (0), U (0)) =
∫

Ω−

[
E(0)(Ũ (0), Ũ (0)) + κ′0|∇ϑ(0)|2−

− %(0)σ2|u(0)|2 − I(0)σ2|ω(0)|2 − iσκ′′0 |ϑ(0)|2−
− ϑ(0) div

(
η(0)u(0) + ζ(0)ω(0)

)− iσϑ(0) div
(
η(0)u(0) + ζ(0)ω(0)

)]
dx.

Now from (4.16) and (4.17) we have
〈
(A(1)

S1
−A(0)

S1
)χ, χ

〉
S1

= B(1)(U (1), U (1)) + B(0)(U (0), U (0)).

Let

U :=

{
U (1) in Ω+,

U (0) in Ω−.

Since U (1) ∈ [H1
2 (Ω+)]7 and U (0) ∈ [H1

2 (Ω−)]7, by relation (4.15) we easily
conclude that U ∈ [H1

2 (R3)]7. Taking into consideration the coercivity
relation (2.26), we have

Re
〈
(A(1)

S1
−A(0)

S1
)χ, χ

〉
S1

≥ C1‖U‖2[H1
2 (R3)]7 − C2‖U‖2[H0

2 (R3)]7 , (4.18)

where C1 and C2 are some positive constants. Note that, by the trace
theorem from (4.18) we derive

Re
〈
(A(1)

S1
−A(0)

S1
)χ, χ

〉
S1

≥ C ′1‖{U}±‖2
[H

1
2
2 (S1)]7

− C2‖U‖2[H0
2 (R3)]7 ≥

≥ C ′1‖χ‖2
[H

1
2
2 (S1)]7

− C ′2‖χ‖2
[H
− 1

2
2 (S1)]7

, (4.19)

since by Theorem A.4 we have the estimate

‖U‖[H0
2 (R3)]7 ≤ C∗2‖χ‖

[H
− 1

2
2 (S1)]7

.

In turn, the inequality (4.19) implies that the operator

A(1)
S1
−A(0)

S1
: [H

1
2
2 (S1)]7 −→ [H− 1

2
2 (S1)]7 (4.20)

is Fredholm with zero index (see, e.g., [32]).
Let us show that the null space of the operator (4.20) is trivial. Indeed, if

χ ∈ [H
1
2
2 (S1)]7 is a solution of the homogeneous equation (A(1)

S1
−A(0)

S1
)χ = 0

on S1, then it follows that the vectors U (1) and U (0) defined by (4.14) solve
the homogeneous transmission problem:

L(1)(∂, σ)U (1)(x) = 0 in Ω+,

L(0)(∂, σ)U (0)(x) = 0 in Ω−,

{U (1)(z)}+ − {U (0)(z)}− = 0 on S1,
{P(1)(∂, n)U (1)(z)

}+ − {P(0)(∂, n)U (0)(z)
}− = 0 on S1.

By the arguments applied in the proof of Theorem 3.1, we conclude that
U (1) = 0 in Ω+ and U (0) = 0 in Ω−, implying χ = 0 on S1. Consequently,
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the null space of the operator (4.20) is trivial. Thus the operator (4.20) is
invertible. Then from the general theory of pseudodifferential operators on
manifolds without boundary it follows that

A(1)
S1
−A(0)

S1
: [Hs

p(S1)]7 −→ [Hs−1
p (S1)]7,

: [Bs
p,t(S1)]7 −→ [Bs−1

p,t (S1)]7

are also invertible operators for arbitrary s ∈ R, 1 < p < ∞, 1 ≤ t ≤ ∞
(see, e.g., [1], [2], [19], [51], [52]).

Step 3. In turn, this yields that the operator (4.10) is invertible for s =

1/2 and p = 2, i.e., the system of equations for the triplet (ϕ, χ, ψ) ∈ X
1
2
2 ,

ϕ− χ = f on S1,

A(1)
S1

ϕ−A(0)
S1

χ = F on S1,

ψ = f (D) on S0,

is uniquely solvable for arbitrary (f, F, f (D)) ∈ Y
1
2
2 .

Applying again the results from the general theory of pseudodifferential
operators on manifolds without boundary we conclude that all the operators
in (4.9)–(4.11) are invertible. ¤

Now we are in a position to prove the following invertibility results.

Theorem 4.2. The operators

D : Xk,β′ −→ Y k,β′ , k ≥ 1, 0 < β′ < γ′ ≤ 1, S0, S1 ∈ Ck+1,γ′ , (4.21)

: Xs
p −→ Y s

p, s ∈ R, 1 < p < ∞, S0, S1 ∈ C∞, (4.22)

: Xs
p,t −→ Y s

p,t, s ∈ R, 1 < p < ∞, 1 ≤ t ≤ ∞, S0, S1 ∈ C∞, (4.23)

are invertible.

Proof. First let us note that by Lemma 4.1 the operators (4.21)–(4.23) are
Fredholm with zero index, since they are compact perturbations of the in-
vertible operators, due to the compactness of the difference D − D̃ in the
corresponding function spaces. Thus, for invertibility we need only to show
that their null-spaces are trivial. Let the triplet Ψ = (ϕ, χ, ψ)> belonging
to one of the spaces Xk,β′ or Xs

p or Xs
p,t be a solution of the homogeneous

equation DΨ = 0, i.e., the homogeneous equation (4.5). Due to the regu-
larity theorem for solutions to the elliptic pseudodifferential equations on
manifolds without boundary we conclude that actually Ψ ∈ Xk,β′ . Fur-
ther, with the help of the solution triplet (ϕ, χ, ψ) we construct the vectors
U (0) and U (1) by formulae (4.1)–(4.2). Clearly, the pair (U (0), U (1)) is a
regular solution to the homogeneous Problem (TD). Consequently, by the
uniqueness Theorem 3.1 we have U (1) = 0 in Ω1 and U (0) = 0 in Ω0. Since
[U (1)]+ = ϕ on S1 we get ϕ = 0.

The vector U (0) defined by formula (4.2) solves the homogeneous differ-
ential equation L(0)(∂, σ)U (0) = 0 in R3\[S0∪S1] and is identical zero in Ω0.
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Since the single layer potentials are continuous in R3 we have that [U (0)]− =
[U (0)]+ = 0 on S1 and [U (0)]+ = [U (0)]− = 0 on S0. So U (0) solves the ho-
mogeneous Dirichlet problems for the operator L(0)(∂, σ) in the domain Ω1

and in the unbounded domain R3 \ [Ω0 ∪Ω1]. Moreover, U (0) decays expo-
nentially at infinity. By the uniqueness theorem for the Dirichlet interior
and exterior problems, which can be easily proved with the help of Green’s
formulae (2.22), we establish that U (0) vanishes in R3. Now, the jump rela-
tions for the singlelayer potential imply [P(0)U (0)]− − [P(0)U (0)]+ = χ = 0
on S1 and [P(0)U (0)]− − [P(0)U (0)]+ = ψ = 0 on S0, which completes the
proof. ¤

These invertibility properties for the operator D lead to the following
existence results for Problem (TD).

Theorem 4.3. Let

S0, S1 ∈ C2,γ′ , f ∈ [C1,β′(S1)]7, F ∈ [C0,β′(S1)]7,

f (D) ∈ [C1,β′(S0)]7, 0 < β′ < γ′ ≤ 1.

Then the problem (3.2)–(3.5) has a unique solution in the class of regular
vector functions which can be represented by the single layer potentials (4.1)–
(4.2), where the triplet

(ϕ, χ, ψ)> ∈ [C1,β′(S1)]7 × [C1,β′(S1)]7 × [C1,β′(S0)]7

is a unique solution of the system of boundary pseudodifferential equations
(4.3).

Theorem 4.4. Let p > 1, s ≥ 1, and

S0, S1 ∈ C∞, f ∈ [
B

s− 1
p

p,p (S1)
]7

,

F ∈ [
B

s−1− 1
p

p,p (S1)
]7

, f (D) ∈ [
B

s− 1
p

p,p (S0)
]7

.

Then the problem (3.2)–(3.5) has a unique solution

(U (0), U (1)) ∈ [W s
p (Ω0)]7 × [W s

p (Ω1)]7

which can be represented by the single layer potentials (4.1)–(4.2), where the
triplet

(ϕ, χ, ψ)> ∈ [B
s− 1

p
p,p (S1)]7 × [B

s− 1
p

p,p (S1)]7 × [B
s− 1

p
p,p (S0)]7

is a unique solution of the system of boundary pseudodifferential equations
(4.3).

Proof. Existence of solutions directly follows from the representations (4.1)–
(4.2) and invertibility of the operator (4.23). Uniqueness for p = 2 follows
from Theorem 3.1. It remains to show uniqueness of solutions for arbitrary
p > 1 and s = 1.
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First we prove that any solution U (`) ∈ [W 1
p (Ω`)]7 of the homogeneous

equation
L(`)(∂, σ)U (`) = 0 in Ω`, ` = 0, 1,

can be represented by the single layer potentials:

U (1)(x) = V
(1)
S1

(ϕ∗)(x), x ∈ Ω1, (4.24)

U (0)(x) = V
(0)
S0

(ψ∗)(x) + V
(0)
S1

(χ∗)(x), x ∈ Ω0, (4.25)

where ϕ∗, χ∗ ∈ [B
− 1

p
p,p (S1)]7 and ψ∗ ∈ [B

− 1
p

p,p (S0)]7.
We show it for the vector U (0) ∈ [W 1

p (Ω0)]7. By the general integral
representation formula we have (see [44, corollary 3.6, formulae (3.77)])

U (0) = W
(0)
S0

([U (0)]+)− V
(0)
S0

(
[P(0)U (0)]+

)−
−W

(0)
S1

([U (0)]−) + V
(0)
S1

(
[P(0)U (0)]−

)
in Ω0. (4.26)

Furthermore, we establish that the double-layer potentials W
(0)
S0

([U (0)]+)

and W
(0)
S1

([U (0)]−) involved in (4.26) can be represented by the single layer
potentials in the interior of S0 (i.e., in Ω) and in the exterior of S1 (i.e.,
in R3 \ Ω1), respectively. Indeed, denote Ũ := W

(0)
S0

([U (0)]+) in Ω, and

consider the vector U∗ := Ũ − V
(0)
S0

(
[H(0)

S0
]−1[Ũ ]+

) ∈ [W 1
p (Ω)]7. Clearly,

L(1)(∂, σ)U∗ = 0 in Ω and [U∗]+ = 0 on S0. Therefore, applying again the
general integral representation formula in Ω, we derive

U∗ = −V
(0)
S0

(
[P(0)U∗]+

) ∈ [W 1
p (Ω)]7.

Whence it follows that

Ũ = V
(0)
S0

(
[H(0)

S0
]−1[Ũ ]+ − [P(0)U∗]+

)
in Ω.

Quite analogously we can show that W
(0)
S1

([U (0)]−) is representable by a
single layer potential in R3 \Ω1. Finally, from (4.26) we conclude that U (0)

can be represented in the form (4.25). Similarly we derive the representation
(4.24).

Due to invertibility of the operators H(`)
Sj

, `, j = 0, 1, we conclude that
any solution pair (U (0), U (1)) ∈ [W 1

p (Ω0)]7× [W 1
p (Ω1)]7 of the homogeneous

Problem (TD) can be represented by formulae (4.1) and (4.2). This implies
that the homogeneous problem (TD) with p > 1 possesses only the trivial
solution since the operator D is invertible by Theorem 4.2. ¤

Corollary 4.5. Let

S0, S1 ∈ C∞, f ∈ [H
1
2
2 (S1)]7, F ∈ [H− 1

2
2 (S1)]7, f (D) ∈ [H

1
2
2 (S0)]7.

Then the problem (3.2)–(3.5) has a unique solution

(U (0), U (1)) ∈ [W 1
2 (Ω0)]7 × [W 1

2 (Ω1)]7
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which can be represented by the single layer potentials (4.1)–(4.2), were the
triplet

(ϕ, χ, ψ)> ∈ [H
1
2
2 (S1)]7 × [H

1
2
2 (S1)]7 × [H

1
2
2 (S0)]7

is a unique solution of the system of boundary pseudodifferential equations
(4.3).

Remark 4.6. Applying the results in the references [8] and [42] (see also
[32]) concerning the properties of the potentials on Lipschitz domains one
can prove that the inequality (4.18) remains valid when S1 is a Lipschitz
surface and the operator (4.20) is invertible. This implies that Corollary
4.5 holds true when S0 and S1 are Lipschitz surfaces.

5. Existence Results for Problem (TN)

We look for a solution pair (U (0), U (1)) of Problem (TN) again in the
form (4.1)–(4.2). Taking into consideration the transmission and boundary
conditions of Problem (TN) and using the properties of the single layer
potentials we arrive at the system of boundary pseudodifferential equations
with respect to the triplet of unknown densities (ϕ, χ, ψ):

ϕ− χ− rS1V
(0)
S0

(
[H(0)

S0
]−1ψ

)
= f on S1,

A(1)
S1

ϕ−A(0)
S1

χ− rS1P(0)(∂, n)V (0)
S0

(
[H(0)

S0
]−1ψ

)
= F on S1,

rS0P(0)(∂, n)V (0)
S1

(
[H(0)

S1
]−1χ

)
+A(0)

S0
ψ = F (N) on S0,

(5.1)

where A(1)
S1

and A(0)
S1

are the Steklov–Poincaré operators given by (4.4), and

A(0)
S0

:= (−2−1I7 +K(0)
S0

)[H(0)
S0

]−1.

Denote by N the matrix integral operator generated by the left hand side
expressions in (5.1)

N = [Nkj ]21×21 :=

:=




I7 −I7 −rS1V
(0)
S0

(
[H(0)

S0
]−1

)

A(1)
S1

−A(0)
S1

−rS1P(0)V
(0)
S0

(
[H(0)

S0
]−1

)

0 rS0P(0)V
(0)
S1

([H(0)
S1

]−1) A(0)
S0




21×21

. (5.2)

Set
Ψ = (ϕ, χ, ψ)>, Q = (f, F, F (N))>,

and rewrite (5.1) in matrix form

NΨ = Q.

Further, let us introduce the function spaces

Zk,β′ := [Ck,β′(S1)]7 × [Ck−1,β′(S1)]7 × [Ck−1,β′(S0)]7,

S0, S1 ∈ Ck+1,γ′ , k ≥ 1, 0 < β′ < γ′ ≤ 1,

Zs
p := [Hs

p(S1)]7 × [Hs−1
p (S1)]7 × [Hs−1

p (S0)]7,
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Zs
p,t := [Bs

p,t(S1)]7 × [Bs−1
p,t (S1)]7 × [Bs−1

p,t (S0)]7,

s ∈ R, 1 < p < ∞, 1 ≤ t ≤ ∞, S0, S1 ∈ C∞.

The operator N possesses the mapping properties

N : Xk,β′ −→ Zk,β′ ,

: Xs
p −→ Zs

p,

: Xs
p,t −→ Zs

p,t,

where the spaces Xk,β′ , Xs
p, and Xs

p,t are defined in (4.6)–(4.8) respec-
tively. To establish Fredholm properties of these operators let us consider
the principal part Ñ of the operator (5.2)

Ñ :=




I7 −I7 0
A(1)

S1
−A(0)

S1
0

0 0 A(0)
S0




21×21

.

It is evident that Ñ has the same mapping properties as N and that the
difference N − Ñ is a compact operator in the corresponding spaces.

As we have shown in Section 4, the upper 14× 14 principal block of the
matrix operator Ñ and the elliptic pseudodifferential operator A(0)

S0
are in-

vertible in the appropriate function spaces. Consequently, Ñ is an invertible
operator. Then it follows that the operator N is Fredholm with zero index.
Now let us show that the operator N has a trivial kernel which implies its
invertibility. Indeed, let Ψ = (ϕ, χ, ψ)> be a solution of the homogeneous
equation

NΨ = 0.

Construct the single layer potentials:

U (1)(x) = V
(1)
S1

(
[H(1)

S1
]−1ϕ

)
(x), x ∈ Ω1,

U (0)(x) = V
(0)
S0

(
[H(0)

S0
]−1ψ

)
(x) + V

(0)
S1

(
[H(0)

S1
]−1χ

)
(x), x ∈ Ω0.

It is easy to verify that the pair (U (0), U (1)) solves the homogeneous Problem
(TN) and, consequently, by the uniqueness Theorem 3.2 we conclude that

U (1)(x) = 0, x ∈ Ω1, U (0)(x) = 0, x ∈ Ω0. (5.3)

As in the proof of Theorem 4.2 one can easily show that the relations (5.3)
implies Ψ = 0.

Now we can formulate the following existence results for Problem (TN).

Theorem 5.1.
(i) Let

S0, S1 ∈ C2,γ′ , f ∈ [C1,β′(S1)]7, F ∈ [C0,β′(S1)]7,

F (N) ∈ [C0,β′(S0)]7, 0 < β′ < γ′ ≤ 1.
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Then the problem (3.2)–(3.4), (3.6) possesses a unique solution in
the class of regular vector functions which can be represented by
single layer potentials (4.1)–(4.2), where the triplet

(ϕ, χ, ψ)> ∈ [C1,β′(S1)]7 × [C1,β′(S1)]7 × [C1,β′(S0)]7

is uniquely defined by the system of boundary pseudodifferential
equations (5.1).

(ii) Let

S0, S1 ∈ C∞, f ∈ [
B

1− 1
p

p,p (S1)
]7

, F ∈ [
B
− 1

p
p,p (S1)

]7
,

F (N) ∈ [
B
− 1

p
p,p (S0)

]7
, p > 1.

Then the problem (3.2)–(3.4), (3.6) possesses a unique solution

(U (0), U (1)) ∈ [W 1
p (Ω0)]7 × [W 1

p (Ω1)]7

which can be represented by the single layer potentials (4.1)–(4.2),
where the triplet

(ϕ, χ, ψ) ∈ [B
1− 1

p
p,p (S1)]7 × [B

1− 1
p

p,p (S1)]7 × [B
1− 1

p
p,p (S0)]7

is a unique solution of the system of boundary pseudodifferential
equations (5.1).

From this theorem, as a particular case, we have the following

Corollary 5.2. Let

S0, S1 ∈ C∞, f ∈ [H
1
2
2 (S1)]7, F ∈ [H− 1

2
2 (S1)]7, F (N) ∈ [H− 1

2
2 (S0)]7.

Then the problem (3.2)–(3.4), (3.6) has a solution

(U (0), U (1)) ∈ [W 1
2 (Ω0)]7 × [W 1

2 (Ω1)]7

which can be represented by the singlelayer potentials (4.1)–(4.2), where the
triplet

(ϕ, χ, ψ) ∈ [H
1
2
2 (S1)]7 × [H

1
2
2 (S1)]7 × [H

1
2
2 (S0)]7

is a unique solution of the system of boundary pseudodifferential equations
(5.1).

Remark 5.3. Applying again the results in the references [8], [42], and
[32]) concerning the properties of the potentials on Lipschitz domains one
can prove that Corollary 5.2 holds true when S0 and S1 are Lipschitz sur-
faces.
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6. Interface Crack Problem (ICP)

6.1. Formulation of the problem. Throughout this section, let Ω1 =
Ω+ be a bounded region in R3 with a simply connected boundary S =
∂Ω1 ∈ C∞ and let Ω0 = Ω− = R3 \ Ω1. As in Section 3, we assume that
the domains Ω` are filled with elastic hemitropic materials having different
material constants, α(`), β(`), γ(`), δ(`), λ(`), µ(`), ν(`), κ(`) and ε(`), ` = 0, 1.
We preserve the notation employed in Section 3 for differential and integral
operators. In what follows, n(z) stands for the outward unit normal vector
with respect to the bounded domain Ω1 at the point z ∈ S. Further, let
the interface surface S be divided into two disjoint, simply connected parts
ST (where the transmission conditions are given) and SC (where the crack
conditions are given): S = ST ∪ SC . We assume that ∂ST = ∂SC is a
simple, C∞-smooth curve. We identify SC as an interface crack surface
with smooth boundary ∂SC .

We will study the following interface crack type mixed transmission Prob-
lem (ICP):

Find vector-functions

U (1) ∈ [W 1
p (Ω1)]7, U (0) ∈ [W 1

p,loc(Ω0)]7, 1 < p < ∞,

satisfying the differential equations,

L(`)(∂, σ)U (`) = 0 in Ω`, ` = 0, 1, (6.1)

the transmission conditions on ST ,

{U (1)}+ − {U (0)}− = f̃ , (6.2)
{P(1)(∂, n)U (1)

}+ − {P(0)(∂, n)U (0)
}− = F̃ on ST , (6.3)

and the interface crack conditions on SC ,
{P(1)(∂, n)U (1)

}+ = F (1),
{P(0)(∂, n)U (0)

}− = F (0) on SC . (6.4)

Moreover, we assume that U (0) is bounded at infinity, whence in view
of (3.1) it follows that actually U (0) decays exponentially at infinity and
U (0) ∈ [W 1

p (Ω0)]7 ∩ [C∞(Ω0)]7 (for details see [44]).
In our analysis we replace the conditions (6.4) by the equivalent ones:
{P(1)(∂, n)U (1)

}+ − {P(0)(∂, n)U (0)
}− = F (1) − F (0) on SC , (6.5)

{P(1)(∂, n)U (1)
}+ +

{P(0)(∂, n)U (0)
}− = F (1) + F (0) on SC . (6.6)

The boundary data involved in the above formulation belong to the natural
spaces:

f̃ ∈ [
B

1− 1
p

p,p (ST )
]7

, F̃ ∈ [B
− 1

p
p,p (ST )]7, F (1), F (0) ∈ [B

− 1
p

p,p (SC)]7. (6.7)

Denote

F :=

{
F̃ on ST ,

F (1) − F (0) on SC .
(6.8)
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Clearly, F represents the difference of generalized traces of the stress vectors,

F =
{P(1)(∂, n)U (1)

}+ − {P(0)(∂, n)U (0)
}− on S.

Therefore the imbedding

F ∈ [B
− 1

p
p,p (S)]7 (6.9)

is the necessary condition for the interface crack problem (ICP) to be solv-
able in the space [W 1

p (Ω0)]7 × [W 1
p (Ω1)]7.

Now we reformulate the problem (ICP) (6.1)–(6.7) in the following form:

Find vector-functions U (`) ∈ [W 1
p (Ω`)]7, ` = 0, 1, 1 < p < ∞, satisfying the

conditions

L(`)(∂, σ)U (`) = 0 in Ω`, ` = 0, 1, (6.10)

{U (1)}+ − {U (0)}− = f̃ on ST , (6.11)
{P(1)(∂, n)U (1)

}+ − {P(0)(∂, n)U (0)
}− = F on S, (6.12)

{P(1)(∂, n)U (1)
}+ +

{P(0)(∂, n)U (0)
}− = F (1) + F (0) on SC . (6.13)

One can easily prove the following particular uniqueness result using
Green’s identities for domains Ω1 and Ω0 (see the proof of Theorem 3.1).

Theorem 6.1. The interface crack problem (6.10)–(6.13) with p = 2
may have at most onesolution.

6.2. Auxiliary problem. Let us consider the following basic transmission
problem (BTP):

Find vector-functions U (`) ∈ [W 1
p (Ω`)]7, ` = 0, 1, 1 < p < ∞, satisfying the

conditions U (`) ∈ [W 1
p (Ω`)]7 :

L(`)(∂, σ)U (`) = 0 in Ω`, ` = 0, 1, (6.14)

{U (1)}+ − {U (0)}− = f on S, (6.15)
{P(1)(∂, n)U (1)

}+ − {P(0)(∂, n)U (0)
}− = F on S, (6.16)

where

f ∈ [
B

1− 1
p

p,p (S)
]7

, F ∈ [
B
− 1

p
p,p (S)

]7
, 1 < p < ∞. (6.17)

Using Green’s formulas it can easily be shown that this problem possesses
at most one solution for p = 2.

Let us look for a solution pair (U (1), U (2)) in the form of single layer
potentials:

U (`)(x) = V (`)
(
[H(`)]−1g(`))(x), ` = 0, 1, (6.18)

where V (`) = V
(`)
S and g(`) ∈ [

B
1− 1

p
p,p (S)

]7 are unknown densities.
The transmission conditions (6.15)–(6.16) lead then to the relations

g(1) − g(0) = f on S, (6.19)

A(1)g(1) −A(0)g(0) = F on S, (6.20)
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where A(`), ` = 0, 1, are the above introduced Steklov–Poincaré operators
(see (4.4)):

A(1) = (−2−1I7 +K(1))[H(1)]−1, A(0) = (2−1I7 +K(0))[H(0)]−1.

From (6.19)–(6.20) we get

g(1) = f − g(0) on S, (6.21)
(A(1) −A(0)

)
g(0) = F −A(1)f on S. (6.22)

As we have shown in the proof of Lemma 4.1 (Step 2) the operator

A(1) −A(0) : [B
− 1

p
p,p (S)]7 −→ [B

− 1
p

p,p (S)]7

is invertible. Therefore we have from (6.22)

g(0) = [A(1) −A(0)]−1(F −A(1)f). (6.23)

By (6.21) we then get

g(1) = [A(1) −A(0)]−1F − [A(1) −A(0)]−1A(0)f. (6.24)

Substituting (6.23) and (6.24) into (6.18) finally we get the following
representation of the solution to the (BTP)

U (1) = V (1)
(
[H(1)]−1[A(1) −A(0)]−1(F −A(0)f)

)
in Ω1, (6.25)

U (0) = V (0)
(
[H(0)]−1[A(1) −A(0)]−1(F −A(1)f)

)
in Ω0. (6.26)

Theorem 6.2. Let 1 < p < ∞ and conditions (6.17) be satisfied. Then
the basic transmission problem (6.14)–(6.17) is uniquely solvable in the space
[W 1

p (Ω1)]7 × [W 1
p (Ω0)]7 and the solution can be represented by formulas

(6.25)–(6.26).

Proof. It is word for word of the proof of Theorem 4.4. ¤

6.3. Existence and regularity of solutions to the (ICP). Let us now
consider the (ICP) (6.10)–(6.13). Denote by f a fixed extension of the vector
f̃ from ST onto the whole of S, preserving the space. Any extension of the

same vector can be then represented as a sum f +ϕ with ϕ ∈ [B̃
1− 1

p
p,p (SC)]7.

We look for a solution pair (U (1), U (0)) to the (ICP) (6.10)–(6.13) in the
form

U (1) = V (1)
(
[H(1)]−1[A(1) −A(0)]−1(F −A(0)(f + ϕ))

)
in Ω1, (6.27)

U (0) = V (0)
(
[H(0)]−1[A(1) −A(0)]−1(F −A(1)(f + ϕ))

)
in Ω0, (6.28)

where F is a known vector-function given by (6.8), f is the fixed extension

of the vector f̃ and ϕ ∈ [B̃
1− 1

p
p,p (SC)]7 is unknown.

One can easily verify that the differential equations (6.10) and the trans-
mission conditions (6.11) and (6.12) are automatically satisfied, while the
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boundary condition (6.13) on the crack surface SC leads to the pseudodif-
ferential equation on SC for the unknown vector-function ϕ:

rSC

{
A(1)[A(1)−A(0)]−1A(0)+A(0)[A(1)−A(0)]−1A(1)

}
ϕ=Φ on SC , (6.29)

where

Φ :=F (1)−F (0)−rSC (−2−1I7+K(1))[H(1)]−1[A(1)−A(0)]−1(F−A(0)f)−
− rSC

(2−1I7 +K(0))[H(0)]−1[A(1) −A(0)]−1(F −A(1)f).

Clearly,

Φ ∈ [B
− 1

p
p,p (SC)]7.

Denote the principal homogeneous symbol matrices of the pseudodiffer-
ential operators A(1) and A(0) by S1 = S1(x, ξ1, ξ2) and S0 = S0(x, ξ1, ξ2)
respectively with x ∈ SC and (ξ1, ξ2) ∈ R2 \ {0}.

Note that, since the principal homogeneous parts of the differential oper-
ators L(`)(∂, σ) are formally selfadjoint, from (4.19) one can conclude that
the principal homogeneous symbol matrices S1 and −S0 of the operators
A(1)

S1
and −A(0)

S1
are positive definite for all x ∈ SC and (ξ1, ξ2) ∈ R2 \ {0}.

For the principal homogeneous symbol matrix of the operator

K := −A(1)[A(1) −A(0)]−1A(0) −A(0)[A(1) −A(0)]−1A(1) (6.30)

we have

SK = −S1(S1−S0)−1S0−S0(S1−S0)−1S1 = 2(S−1
1 −S−1

0 )−1. (6.31)

Whence it follows that SK = SK(x, ξ1, ξ2) is positive definite for all x ∈ SC

and (ξ1, ξ2) ∈ R2 \ {0}.
Rewrite equation (6.29) in the form

rSC (Kϕ) = −Φ on SC ,

Due to the results in [52] (see also Appendix C in [44]), since K is an ellip-
tic pseudo differential operator of order +1 with positive definite principal
homogeneous symbol, we conclude that the operator

rSC
K : [B̃s

p,t(SC)]7 −→ [Bs−1
p,t (SC)]7 (6.32)

is Fredholm with zero index for arbitrary t ∈ [1,∞], if
1
p
− 1 < s− 1

2
<

1
p

. (6.33)

In particular, for s = 1− 1
p and t = p we get that the operator

rSC
K :

[
B̃

1− 1
p

p,p (SC)
]7 −→ [

B
− 1

p
p,p (SC)

]7 (6.34)

is Fredholm, if
4
3

< p < 4. (6.35)

Moreover, the null space of the operator (6.32) does not depend on t, p and
s if (6.33) holds (see, e.g., [5, Theorem 3.5]).
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Now we show that the null space of the operator (6.34) with p = 2,

rSC K :
[
H̃

1
2
2 (SC)

]7 −→ [H− 1
2

2 (SC)]7 (6.36)

is trivial.
Let ψ ∈ [H

1
2
2 (SC)]7 be a solution of the homogeneous equation

rSC
Kψ = 0 on SC (6.37)

and construct the vectors

Ũ (1)(x) = −V (1)
(
[H(1)]−1[A(1) −A(0)]−1A(0)ψ

)
in Ω1,

Ũ (0)(x) = −V (0)
(
[H(0)]−1[A(1) −A(0)]−1A(1)ψ

)
in Ω0.

It is easy to check that the pair (Ũ (1), Ũ (0)) solve the homogeneous problem
(ICP) (6.10)–(6.13). Due to the uniqueness Theorem 6.1 it follows that

Ũ (1) = 0 in Ω0 and Ũ (1) = 0 in Ω1.

Whence

0={Ũ (1)}+−{Ũ (0)}−=−[A(1)−A(0)]−1A(0)ψ+[A(1)−A(0)]−1A(1)ψ=ψ.

Thus, equation (6.37) possesses only the zero solution and consequently the
null space of the operator (6.36) is trivial. Therefore it follows that the
operator (6.32) with s and p satisfying the condition (6.33) is invertible.

The same holds true for the operator (6.34) with p satisfying the inequal-
ities (6.35). The above results lead to the following existence and regularity
theorems.

Theorem 6.3. Let 4/3 < p < 4,

f̃ ∈ [
B

1− 1
p

p,p (ST )
]7

, F̃ ∈ [
B
− 1

p
p,p (ST )

]7
, F (0), F (1) ∈ [

B
− 1

p
p,p (SC)

]7
,

and for F given by (6.8) the inclusion (6.9) hold. Then the interface crack
problem (ICP) possesses a unique solution pair

(U (0), U (1)) ∈ [W 1
p (Ω0)]7 × [W 1

p (Ω1)]7,

which is representable in the form (6.27)–(6.28), where the unknown vector
ϕ is a unique solution to the pseudodifferential equation (6.29).

Proof. It is quite similar to the proof of Theorem 4.4. The existence of so-
lution follows from the mapping properties of the layer potentials described
in Theorems A.1–A.4 (see Appendix A), while the uniqueness of solution
is a consequence of the invertibility of the operator (6.34) with p satisfying
the inequality (6.35). ¤

Theorem 6.4. Let

1 < t < ∞, 1 ≤ r ≤ ∞,
4
3

< p < 4,
1
t
− 1

2
< s <

1
t

+
1
2

, (6.38)

and let a pair (U (0), U (1)) ∈ [W 1
p (Ω0)]7 × [W 1

p,loc(Ω1)]7 be a solution to
Problem (ICP).
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(i) If f̃ ∈ [Bs
t,t(ST )]7, F̃ ∈ [Bs−1

t,t (ST )]7, F (0), F (1) ∈ [Bs−1
t,t (SC)]7, and

F ∈ [Bs−1
t,t (S)]7, where F is defined by (6.8), then

(U (0), U (1)) ∈ [Hs+ 1
t

t (Ω0)]7 × [Hs+ 1
t

t (Ω1)]7;

(ii) If f̃ ∈ [Bs
t,r(ST )]7, F̃ ∈ [Bs−1

t,r (ST )]7, F (0), F (1) ∈ [Bs−1
t,r (SC)]7, and

F ∈ [Bs−1
t,r (S)]6, where F is defined by (6.8),then

(U (0), U (1)) ∈ [Bs+ 1
t

t,r (Ω0)]7 × [Bs+ 1
t

t,r (Ω1)]7; (6.39)

(iii) If

f̃ ∈ [Cβ′(ST )]7, F̃ ∈ [
Bβ′−1
∞,∞(ST )

]7
, F ∈ [

Bβ′−1
∞,∞(S)

]7
,

F (0), F (1) ∈ [
Bβ′−1
∞,∞(SC)

]7
, β′ > 0,

(6.40)

where F is defined by (6.8), then

U (`) ∈
⋂

σ′<ν′

[
Cσ′(Ω`)

]7
, ` = 0, 1,

where ν′ = min{β′, 1/2}.
Proof. Under the restrictions on the parameters r, t and s stated in the
theorem we see that the operator (6.32) is invertible. Therefore the items
(i) and (ii) immediately follow from the mapping properties of the single
layer potentials and the boundary operators A(1) − A(0) and H(`), A(`),
` = 0, 1.

To prove (iii) we use the following embeddings (see, e.g., [54], [55])

Bα′
∞,∞(S) ⊂ Bα′−ε′

∞,1 (S) ⊂ Bα′−ε′
∞,r (S) ⊂ Bα′−ε′

t,r (S), (6.41)

Cβ′(S) = Bβ′
∞,∞(S) ⊂ Bβ′−ε′

∞,1 (S) ⊂ Bβ′−ε′
∞,r (S) ⊂

⊂ Bβ′−ε′
t,r (S) ⊂ Cβ′−ε′− k

t (S), (6.42)

where α′ ∈ R, ε′ is an arbitrary small positive number, S ⊂ R3 is a compact
k-dimensional (k = 2, 3) smooth manifold with smooth boundary, 1 ≤ r ≤
∞, 1 < t < ∞, β′ − ε′ − k/t > 0, β′ and β′ − ε′ − k/t are not integers.
From (6.40) and the embeddings (6.41) the condition (6.39) follows with
any s ≤ β′ − ε′.

Bearing in mind the conditions (6.38) and taking t sufficiently large and
ε′ sufficiently small, we may put s = β′ − ε′ if

1
t
− 1

2
< β′ − ε′ <

1
t

+
1
2

, (6.43)

and s ∈ (1/t− 1/2, 1/t + 1/2) if
1
t

+
1
2

< β′ − ε′. (6.44)

By the inclusion (6.39) the vector U (`) belongs then to [Bs+ 1
t

t,r (Ω`)]7 with
s+1/t = β′−ε′+1/t if (6.43) holds, and with s+1/t ∈ (2/t−1/2, 2/t+1/2)
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if (6.44) holds. In the last case we can take s + 1/t = 2/t + 1/2 − ε′.

Therefore, we have either U (`) ∈ [Bβ′−ε′+ 1
t

t,r (Ω`)]7, or U (`) ∈ [B
1
2+ 2

t−ε′

t,r (Ω`)]7

in accordance with the inequalities (6.43) and (6.44). The last embedding
in (6.42) (with k = 3) yields that either U (`) ∈ [Cβ′−ε′− 2

t (Ω`)]7, or U (`) ∈
[C

1
2−ε′− 1

t (Ω`)]7 which lead to the inclusion

U (`) ∈ [
Cν′−ε′− 2

t (Ω`)
]7

, ` = 0, 1, (6.45)

where ν′ := min{β′, 1/2}. Since t is sufficiently large and ε′ is sufficiently
small, the embedding (6.45) completes the proof. ¤

Remark 6.5. More detailed analysis based on the asymptotic expansions
of solutions (see [6], [9]) shows that for sufficiently smooth boundary data
(e.g., C∞-smooth data say) the leading asymptotic terms of the solution vec-
tors U (0) and U (1) near the interface crack edge, i.e., near the curve ∂ST =
∂SC can be represented as a product of a “good” vector-function and a sin-
gular factor of the form [ln %(x)]qj [%(x)]αj+iβj , 0 ≤ qj ≤ mj − 1. Here %(x)
is the distance from a reference point x to the curve ∂ST = ∂SC . Therefore,
near the interface crack edge, the leading dominant singular terms of the
corresponding generalized stress vectors P(`)U (`) are represented as a prod-
uct of a “good” vector-function and the factors [ln %(x)]qj [%(x)]−1+αj+iβj .
Clearly when the numbers βj are different from zero then we have the os-
cillating stress singularities.

The exponents αj+iβj are related to the eigenvalues λj = λj(x), j = 1, 7,
of the matrix (see (6.30), (6.31))

[
SK(x, 0, +1)

]−1
SK(x, 0,−1)

for x ∈ ∂ST = ∂SC , and the following relations hold

αj =
1
2

+
arg λj

2π
, βj = − ln |λj |

2π
, j = 1, 7.

In the above expressions the parameter mj denotes the algebraic multiplicity
of the eigenvalue λj .

Note that due to the positive definiteness of the matrix SK(x, ξ1, ξ2) for
all x ∈ S1 and (ξ1, ξ2) ∈ R2 \ {0} it is easy to show that all eigenvalues λj

are positive which implies that αj = 1
2 , j = 1, 7.

It is evident that when |λj | 6= 1, then the corresponding βj 6= 0 and
oscillating stress singularities arise near the interface crack edge. More-
over, the components of the generalized stress vector P(`)U (`) behave like
O(

[ln %(x)]q0−1[%(x)]−
1
2
)
, where q0 denotes the maximal algebraic multiplic-

ity of the eigenvalues. This is a global singularity effect for the first order
derivatives of the vectors U (0) and U (1). As we see, the stress singularity
exponents for the interface crack problem in the case of hemitropic solids
have the form − 1

2 + iβj where βj depends on the material parameters of
the constituent solids of the composite structure.
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7. Appendix A

Here we collect some results concerning mapping and regularity prop-
erties of the single and double layer potentials and the boundary pseudo-
differential operators generated by them in the Hölder (Cm,κ), Sobolev–
Slobodetski (W s

p ), Bessel potential (Hs
p) and Besov (Bs

p,q) spaces. They
can be found in [10], [11], [12], [13], [16], [21], [22], [32], [36], [37], [38], [40],
[43], and [44].

We assume (if not otherwise stated) that Ω+ ⊂ R3 is a bounded domain
with boundary S = ∂Ω+ and Ω− = R3 \ Ω+,

S = ∂Ω± ∈ Cm,γ′ with integer m ≥ 2 and 0 < γ′ ≤ 1,

σ = σ1 + iσ2, σ1 ∈ R, σ2 > 0.
(A.1)

Introduce the single and double layer potentials

V (x) = VS(x) :=
∫

S

Γ(x− y, σ)g(y) dSy, (A.2)

W (x) = WS(x) :=
∫

S

[P∗(∂y, n(y))Γ>(x− y, σ)
]>

g(y) dSy, (A.3)

where x ∈ R3 \ S, Γ(x − y, σ) is the fundamental matrix of the operator
L(∂, σ) which is explicitly constructed in [44]. The proofs of the following
theorems can be found in [44].

Theorem A.1. Let S, m, and γ′ be as in (A.1), 0 < β′ < γ′, and let
k ≤ m− 1 be a nonnegative integer. Then the operators

V : [Ck,β′(S)]7 −→ [
Ck+1,β′(Ω±)

]7
,

W : [Ck,β′(S)]7 −→ [
Ck,β′(Ω±)

]7 (A.4)

are continuous.
For any g ∈ [C0,β′(S)]7, h ∈ [C1,β′(S)]7, and for all x ∈ S

[V (g)(x)]± = V (g)(x) = Hg(x), (A.5)
[P(∂x, n(x))V (g)(x)

]± = [∓2−1I7 +K]g(x), (A.6)

[W (g)(x)]± = [±2−1I7 +N ]g(x), (A.7)
[P(∂x, n(x))W (h)(x)

]+ = [P(∂x, n(x))W (h)(x)]− = Lh(x), (A.8)

where

Hg(x) = HSg(x) :=
∫

S

Γ(x− y, σ)g(y) dSy, (A.9)

Kg(x) = KSg(x) :=
∫

S

[P(∂x, n(x))Γ(x− y, σ)
]
g(y) dSy, (A.10)
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N g(x) = NSg(x) :=
∫

S

[P∗(∂y, n(y))Γ>(x− y, σ)
]>

g(y) dSy, (A.11)

Lh(x) = LSh(x) := (A.12)

:= lim
Ω±3z→x∈S

P(∂z, n(x))
∫

S

[P∗(∂y, n(y))Γ>(z−y, σ)
]>

h(y) dSy. (A.13)

Theorem A.2. Let S be a Lipschitz surface. Then the operators (A.4)
can be extended to the continuous mappings

V : [H− 1
2

2 (S)]7 −→ [H1
2 (Ω±)]7, W : [H

1
2
2 (S)]7 −→ [H1

2 (Ω±)]7.

The jump relations (A.5)–(A.8) on S remain valid for the extended operators
in the corresponding function spaces.

Theorem A.3. Let S, m, γ′, β′ and k be as in Theorem A.1. Then the
operators

H : [Ck,β′(S)]7 −→ [Ck+1,β′(S)]7,

: [H− 1
2

2 (S)]7 −→ [H
1
2
2 (S)]7,

(A.14)

K : [Ck,β′(S)]7 −→ [Ck,β′(S)]7,

: [H− 1
2

2 (S)]7 −→ [H− 1
2

2 (S)]7,
(A.15)

N : [Ck,β′(S)]7 −→ [Ck,β′(S)]7,

: [H
1
2
2 (S)]7 −→ [H

1
2
2 (S)]7,

(A.16)

L : [Ck,β′(S)]7 −→ [Ck−1,β′(S)]7,

: [H
1
2
2 (S)]7 −→ [H− 1

2
2 (S)]7

(A.17)

are continuous. Moreover,

(i) the principal homogeneous symbol matrices of the singular integral
operators ±2−1I7 + K and ±2−1I7 + N are non-degenerate, while
the principal homogeneous symbol matrices of the pseudodifferential
operators −H and L are positive definite;

(ii) the operators H, ±2−1I7 +K, ±2−1I7 +N , and L are elliptic pseu-
dodifferential operators (of order −1, 0, 0, and 1, respectively) with
zero index;

(iii) the following equalities hold in appropriate function spaces:

NH = HK, LN = KL,

HL = −4−1I7 +N 2, LH = −4−1I7 +K2.

(iv) The operators (A.14), (A.15), (A.16), and (A.17) are bounded if S
is a Lipschitz surface.
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Theorem A.4. Let V , W , H, K, N , and L be as in Theorems A.1 and
A.3 and let s ∈ R, 1 < p < ∞, 1 ≤ q ≤ ∞, S ∈ C∞. The layer potential op-
erators (A.2), (A.3) and the boundary integral (pseudodifferential) operators
(A.9)–(A.12) can be extended to the following continuous operators

V : [Bs
p,p(S)]7 −→ [H

s+1+ 1
p

p (Ω±)]7
(

[Bs
p,q(S)]7 −→ [

B
s+1+ 1

p
p,q (Ω±)

]7 )
,

W : [Bs
p,p(S)]7 −→ [H

s+ 1
p

p (Ω±)]7
(

[Bs
p,q(S)]7 −→ [

B
s+ 1

p
p,q (Ω±)

]7 )
,

H : [Hs
p(S)]7 −→ [Hs+1

p (S)]7
(

[Bs
p,q(S)]7 −→ [Bs+1

p,q (S)]7
)
, (A.18)

K : [Hs
p(S)]7 −→ [Hs

p(S)]7
(

[Bs
p,q(S)]7 −→ [Bs

p,q(S)]7
)
, (A.19)

N : [Hs
p(S)]7 −→ [Hs

p(S)]7
(

[Bs
p,q(S)]7 −→ [Bs

p,q(S)]7
)
, (A.20)

L : [Hs+1
p (S)]7 −→ [Hs

p(S)]7
(

[Bs+1
p,q (S)]7 −→ [Bs

p,q(S)]7
)
. (A.21)

The jump relations (A.5)–(A.8) remain valid for arbitrary g ∈ [Bs
p,q(S)]7

with s ∈ R if the limiting values (traces) on S are understood in the sense
described in [51].

The operators (A.18)–(A.21) are elliptic pseudodifferential operators with
zero index. The null-spaces of the operators (A.18)–(A.21) are invariant
with respect to p, q, and s.

Theorem A.5. Let S ∈ C2,γ′ and 0 < β′ < γ′ ≤ 1. Then the operator

H : [C0,β′(S)]7 −→ [C1,β′(S)]7

is invertible.

Theorem A.6. Let S be Lipschitz. Then the operator

H : [H− 1
2

2 (S)]7 −→ [H
1
2
2 (S)]7

is invertible.

Let us introduce the volume Newtonian potential

NΩ(Ψ)(x) :=
∫

Ω

Γ(x− y, σ)Ψ(y) dx,

where Ω ⊂ R3 is an arbitrary bounded domain and either Ψ ∈ [L2(Ω)]7 or
Ψ ∈ [C0,β′(Ω)]7 with 0 < β′ < 1. There holds the following proposition
(see, e.g., [33], [32]).

Theorem A.7. Let S ∈ C1,γ′ and 0 < β′ < γ′ ≤ 1. Then operators

NΩ : [L2(Ω)]7 −→ [W 2
2 (Ω)]7,

: [C0,β′(Ω)]7 −→ [C2,β′(Ω)]7 ∩ [C1,β′(Ω)]7,
(A.22)
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are bounded. The mapping property (A.22) holds for Lipschitz domains as
well. Moreover,

L(∂, σ)NΩ(Ψ)(x) = Ψ(x), x ∈ Ω,

for almost all x in Ω if Ψ ∈ [L2(Ω)]7 and for all x in Ω if Ψ ∈ [C0,β′(Ω)]7.
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1. Statement of the Main Results

Consider the differential equation with deviating arguments

u(n)(t) =
m∑

j=1

pj(t)u(j−1)(τj(t)) + q(t) for a < t < b (1.1)

with the two-point conjugated and right-focal boundary conditions

u(i−1)(a) = 0 (i = 1, . . . , m), u(j−1)(b) = 0 (j = 1, . . . , n−m), (1.2)

and

u(i−1)(a) = 0 (i = 1, . . . , m), u(j−1)(b) = 0 (j = m + 1, . . . , n). (1.3)

Here n ≥ 2, m is the integer part of n/2, −∞ < a < b < +∞, pj , q ∈
Lloc(]a, b[) (j = 1, . . . , m), and τj : ]a, b[→ ]a, b[ are measurable functions.
By u(j−1)(a) (u(j−1)(b)) we mean the right (the left) limit of the function
u(j−1) at the point a (at the point b).

Following R. P. Agarwal and I. Kiguradze [1], we say that the equation
(1.1) is strongly singular if

∫ b

a
P (s)ds = +∞, where

P (t) = (t−a)n−1(b−t)n−1
[
(−1)n−mp1(t)

]
+

+
m∑

i=2

(t−a)n−i(b−t)n−i|pi(t)|.

If the equation (1.1) is strongly singular, then we say that the problem
(1.1), (1.2) (the problem (1.1), (1.3)) is also strongly singular.

In the case, where τj(t) ≡ t (j = 1, . . . , m), the strongly singular prob-
lems (1.1), (1.2) and (1.1), (1.3) are investigated in detail by I. Kiguradze and
R. P. Agarwal [1], [2]. In particular, unimprovable in a certain sense condi-
tions are established by them for the unique solvability of those problems in
the spaces C̃n−1,m(]a, b[) and C̃n−1,m(]a, b]). For τj(t) 6≡ t (j = 1, . . . ,m),
the analogous results are obtained in [5], [6]. In the present paper, on the
basis of the results of [6], the estimates for solutions of the strongly singular
problems (1.1), (1.2) and (1.1), (1.3) are established.

Throughout the paper we use the following notations.
R+ = [0, +∞[ ;
[x]+ is the positive part of a number x, i.e., [x]+ = x+|x|

2 ;
Lloc(]a, b[) (Lloc(]a, b])) is the space of functions y : ]a, b[→ R, which are

integrable on [a + ε, b− ε] ([a + ε, b]) for an arbitrarily small ε > 0;
Lα,β(]a, b[) (L2

α,β(]a, b[)) is the space of integrable (square integrable)
with the weight (t− a)α(b− t)β functions y : ]a, b[→ R, with the norm

‖y‖Lα,β
=

b∫

a

(s− a)α(b− s)β |y(s)| ds

(
‖y‖L2

α,β
=

( b∫

a

(s− a)α(b− s)βy2(s) ds

)1/2 )
;
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L([a, b]) = L0,0(]a, b[), L2([a, b]) = L2
0,0(]a, b[);

M(]a, b[) is the set of measurable functions τ : ]a, b[→ ]a, b[ ;
L̃2

α,β(]a, b[) (L̃2
α(]a, b]) is the Banach space of functions y ∈ Lloc(]a, b[)

(Lloc(]a, b])) such that

µ1 ≡ max
{[ t∫

a

(s− a)α
( t∫

s

y(ξ) dξ
)2

ds

]1/2

: a ≤ t ≤ a + b

2

}
+

+ max
{[ b∫

t

(b−s)β
( s∫

t

y(ξ) dξ
)2

ds

]1/2

:
a + b

2
≤ t ≤ b

}
<+∞,

µ2 ≡ max
{[ t∫

a

(s− a)α
( t∫

s

y(ξ) dξ
)2

ds

]1/2

: a ≤ t ≤ b

}
< +∞.

Norms in this spaces are defined by the equalities ‖·‖L̃2
α,β

= µ1 (‖·‖L̃2
α

= µ2).

C̃n−1,m(]a, b[) (C̃n−1,m(]a, b])) is the space of functions y ∈ C̃n−1
loc (]a, b[)

(y ∈ C̃n−1
loc (]a, b])) such that

b∫

a

|u(m)(s)|2 ds < +∞. (1.4)

When the problem (1.1), (1.2) is discussed, we assume that for n = 2m
the conditions

pj ∈ Lloc(]a, b[) (j = 1, . . . ,m) (1.5)
are fulfilled, and for n = 2m + 1, along with (1.5), the condition

lim sup
t→b

∣∣∣∣(b− t)2m−1

t∫

t1

p1(s) ds

∣∣∣∣ < +∞
(
t1 =

a + b

2

)
(1.6)

is fulfilled. The problem (1.1), (1.3) is discussed under the assumptions

pj ∈ Lloc(]a, b]) (j = 1, . . . , m). (1.7)

A solution of the problem (1.1), (1.2) ((1.1), (1.3)) is sought in the space
C̃n−1,m(]a, b[) (C̃n−1,m(]a, b])).

By hj : ]a, b[× ]a, b[→ R+ and fj : R × M(]a, b[) → Cloc(]a, b[× ]a, b[)
(j = 1, . . . ,m) we denote, respectively, functions and operators defined by
the equalities

h1(t, s) =
∣∣∣∣

t∫

s

(ξ − a)n−2m
[
(−1)n−mp1(ξ)

]
+

dξ

∣∣∣∣,

hj(t, s) =
∣∣∣∣

t∫

s

(ξ − a)n−2mpj(ξ) dξ

∣∣∣∣ (j = 2, . . . ,m),

(1.8)
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and

fj(c, τj)(t, s) =
∣∣∣∣

t∫

s

(ξ − a)n−2m|pj(ξ)|
∣∣∣

τj(ξ)∫

ξ

(ξ1 − c)2(m−j) dξ1

∣∣∣
1/2

dξ

∣∣∣∣. (1.9)

Suppose also that

m!! =

{
1 for m ≤ 0
1 · 3 · 5 · · ·m for m ≥ 1

,

if m = 2k + 1.
In [6] (see, Theorems 1.4 and 1.5), the following two theorems are proved.

Theorem 1.1. Let there exist numbers t∗ ∈ ]a, b[ , `kj > 0, lkj ≥ 0, and
γkj > 0 (k = 0, 1; j = 1, . . . , m) such that along with

B0 ≡
m∑

j=1

(
(2m− j)22m−j+1l0j

(2m− 1)!!(2m− 2j + 1)!!
+

+
22m−j−1(t∗ − a)γ0j l0j

(2m− 2j − 1)!!(2m− 3)!!
√

2γ0j

)
<

1
2
, (1.10)

B1 ≡
m∑

j=1

(
(2m− j)22m−j+1l1j

(2m− 1)!!(2m− 2j + 1)!!
+

+
22m−j−1(b− t∗)γ0j l1j

(2m− 2j − 1)!!(2m− 3)!!
√

2γ1j

)
<

1
2
, (1.11)

the conditions

(t− a)2m−jhj(t, s) ≤ l0j , (t− a)m−γ0j−1/2fj(a, τj)(t, s) ≤ l0j (1.12)

for a < t ≤ s ≤ t∗,

(b− t)2m−jhj(t, s) ≤ l1j , (b− t)m−γ1j−1/2fj(b, τj)(t, s) ≤ l1j (1.13)

for t∗ ≤ s ≤ t < b

hold. Then for every q ∈ L̃2
2n−2m−2,2m−2(]a, b[) the problem (1.1), (1.2) is

uniquely solvable in the space C̃n−1,m(]a, b[).

Theorem 1.2. Let there exist numbers t∗ ∈ ]a, b[ , `0j > 0, `0j ≥ 0, and
γ0j > 0 (j = 1, . . . , m) such that the conditions

(t− a)2m−jhj(t, s) ≤ l0j , (t− a)m−γ0j−1/2fj(a, τj)(t, s) ≤ l0j (1.14)
for a < t ≤ s ≤ b,
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and

B3 ≡
m∑

j=1

(
(2m− j)22m−j+1l0j

(2m− 1)!!(2m− 2j + 1)!!
+

+
22m−j−1(t∗ − a)γ0j l0j

(2m− 2j − 1)!!(2m− 3)!!
√

2γ0j

)
< 1 (1.15)

hold. Then for every q ∈ L̃2
2n−2m−2(]a, b]), the problem (1.1), (1.3) is uniquely

solvable in the space C̃n−1,m(]a, b]).

In the paper, we prove the following two theorems on the estimates of
solutions of the problems (1.1), (1.2) and (1.1), (1.3), the existence of which
is guaranteed by Theorems 1.1 and 1.2.

Theorem 1.3. Let all the conditions of Theorem 1.1 be satisfied. Then
the unique solution u of the problem (1.1), (1.2) for every q ∈
L̃2

2n−2m−2,2m−2(]a, b[) admits the estimate

‖u(m)‖L2 ≤ r‖q‖L̃2
2n−2m−2,2m−2

, (1.16)

where

r =
(1 + b− a)(2n− 2m− 1)2m

(νn − 2max{B0, B1})(2m− 1)!!
, ν2m = 1, ν2m+1 =

2m + 1
2

,

and thus the constant r > 0 depends only on the numbers lkj, lkj, γkj

(k = 1, 2; j = 1, . . . ,m), and a, b, t∗, n.

Theorem 1.4. Let all the conditions of Theorem 1.2 be satisfied. Then
the unique solution u of the problem (1.1), (1.3) for every q ∈ L̃2

2n−2m−2(]a, b])
admits the estimate

‖u(m)‖L2 ≤ r‖q‖L̃2
2n−2m−2

, (1.17)

where

r =
2m−1(2n− 2m− 1)
(νn −B3)(2m− 1)!!

, ν2m = 1, ν2m+1 =
2m + 1

2
,

end thus the constant r > 0 depends only on the numbers l0j, l0j, γ0j

(j = 1, . . . , m), and a, b, n.

2. Auxiliary Propositions

To prove Theorems 1.3 and 1.4, we need Lemmas 2.1–2.6 below.

Lemma 2.1. Let ∈ C̃m−1
loc (]t0, t1[) and

u(j−1)(t0) = 0 (j = 1, . . . , m),

t1∫

t0

|u(m)(s)|2 ds < +∞. (2.1)
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Then
t∫

t0

(u(j−1)(s))2

(s− t0)2m−2j+2
ds ≤

≤
( 2m−j+1

(2m− 2j + 1)!!

)2
t∫

t0

|u(m)(s)|2 ds for t0 ≤ t ≤ t1. (2.2)

Lemma 2.2. Let u ∈ C̃m−1
loc (]t0, t1[), and

u(j−1)(t1) = 0 (j = 1, . . . , m),

t1∫

t0

|u(m)(s)|2 ds < +∞. (2.3)

Then
t1∫

t

(u(j−1)(s))2

(t1 − s)2m−2j+2
ds ≤

≤
( 2m−j+1

(2m− 2j + 1)!!

)2
t1∫

t

|u(m)(s)|2 ds for t0 ≤ t ≤ t1. (2.4)

Let t0, t1 ∈ ]a, b[ , u ∈ C̃m−1
loc (]t0, t1[), and τj ∈ M(]a, b[) (j = 1, . . . ,m).

Then we define the functions µj : [a, (a+b)/2]× [(a+b)/2, b]× [a, b] → [a, b],
ρk : [t0, t1] → R+ (k = 0, 1), λj : [a, b]× ]a, (a+b)/2]× [(a+b)/2, b[× ]a, b[→
R+ by the equalities

µj(t0, t1, t) =





τj(t) for τj(t) ∈ [t0, t1]
t0 for τj(t) < t0

t1 for τj(t) > t1

,

ρk(t) =
∣∣∣∣

tk∫

t

|u(m)(s)|2 ds

∣∣∣∣,

λj(c, t0, t1, t) =
∣∣∣∣

µj(t0,t1,t)∫

t

(s− c)2(m−j) ds

∣∣∣∣
1/2

.

(2.5)

Moreover, we define the functions αj : R3
+ × [0, 1[→ R+ and βj ∈ R+ ×

[0, 1[→ R+ (j = 1, . . . , m) as follows

αj(x, y, z, γ) = x +
2m−jyzγ

(2m− 2j − 1)!!
,

βj(y, γ) =
22m−j−1

(2m− 2j − 1)!!(2m− 3)!!
yγ

√
2γ

.

(2.6)
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Lemma 2.3. Let a0 ∈ ]a, b[ , t0 ∈ ]a, a0[ , t1 ∈ ]a0, b[ , and a function u ∈
C̃m−1

loc (]t0, t1[) be such that the conditions (2.1) hold. Moreover, let constants
l0j > 0, l0j ≥ 0, γ0j > 0, and functions pj ∈ Lloc(]t0, t1[), τj ∈ M(]a, b[) be
such that the inequalities

(t− t0)2m−1

a0∫

t

[
p1(s)

]
+

ds ≤ l01, (2.7)

(t− t0)2m−j
∣∣∣

a0∫

t

pj(s) ds
∣∣∣ ≤ l0j (j = 2, . . . , m), (2.8)

(t− t0)m− 1
2−γ0j

∣∣∣∣
a0∫

t

pj(s)λj(t0, t0, t1, s) ds

∣∣∣∣ ≤ l0j (j = 1, . . . ,m), (2.9)

hold for t0 < t ≤ a0. Then

a0∫

t

pj(s)u(s)u(j−1)(µj(t0, t1, s)) ds ≤

≤αj(l0j , l0j , a0−a, γ0j)ρ
1/2
0 (τ∗)ρ1/2

0 (t)+l0jβj(a0−a, γ0j)ρ
1/2
0 (τ∗)ρ1/2

0 (a0)+

+ l0j
(2m− j)22m−j+1

(2m− 1)!!(2m− 2j + 1)!!
ρ0(a0) for t0 < t ≤ a0, (2.10)

where τ∗ = sup
{
µj(t0, t1, t) : t0 ≤ t ≤ a0, j = 1, . . . ,m

} ≤ t1.

Lemma 2.4. Let b0 ∈ ]a, b[ , t1 ∈ ]b0, b[ , t0 ∈ ]a, b0[ , and a function u ∈
C̃m−1

loc (]t0, t1[) be such that the conditions (2.3) hold. Moreover, let constants
l1j > 0, l1j ≥ 0, γ1j > 0, and functions pj ∈ Lloc(]t0, t1[), τj ∈ M(]a, b[) be
such that the inequalities

(t1 − t)2m−1

t∫

b0

[
p1(s)

]
+

ds ≤ l11, (2.11)

(t1 − t)2m−j

∣∣∣∣
t∫

b0

pj(s) ds

∣∣∣∣ ≤ l1j (j = 2, . . . , m), (2.12)

(t1 − t)m− 1
2−γ1j

∣∣∣∣
t∫

b0

pj(s)λj(t1, t0, t1, s) ds

∣∣∣∣ ≤ l1j (j = 1, . . . , m) (2.13)
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hold for b0 < t ≤ t1. Then

t∫

b0

pj(s)u(s)u(j−1)(µj(t0, t1, s)) ds ≤

≤αj(l1j , l1j , b−b0, γ1j)ρ
1/2
1 (τ∗)ρ

1/2
1 (t)+l1jβj(b−b0, γ1j)ρ

1/2
1 (τ∗)ρ

1/2
1 (b0)+

+ l1j
(2m− j)22m−j+1

(2m− 1)!!(2m− 2j + 1)!!
ρ1(b0) for b0 ≤ t < t1, (2.14)

where τ∗ = inf
{
µj(t0, t1, t) : b0 ≤ t ≤ t1, j = 1, . . . , m

} ≥ t0.

Lemma 2.5. If u ∈ Cn−1
loc (]a, b[), then for any s, t ∈ ]a, b[ the equality

(−1)n−m

t∫

s

(ξ − a)n−2mu(n)(ξ)u(ξ) dξ =

= wn(t)− wn(s) + νn

t∫

s

|u(m)(ξ)|2 dξ (2.15)

is valid, where

ν2m = 1, ν2m+1 =
2m + 1

2
, w2m(t) =

m∑

j=1

(−1)m+j−1u(2m−j)(t)u(t),

w2m+1(t) =
m∑

j=1

(−1)m+j
[
(t− a)u(2m+1−j)(t)− ju(2m−j)(t)

]
u(j−1)(t)−

− t− a

2
|u(m)(t)|2.

Lemma 2.6. Let

w(t) =
n−m∑

i=1

n−m∑

k=i

cik(t)u(n−k)(t)u(i−1)(t),

where C̃n−1,m(]a, b[), and each cik : [a, b] → R is an (n−k−i+1)-times con-
tinuously differentiable function. If, moreover, u(i−1)(a) = 0 (i = 1, . . . ,m),

lim sup
t→a

|cii(t)|
(t− a)n−2m

< +∞ (i = 1, . . . , n−m),

then lim inf
t→a

|w(t)| = 0, and if u(i−1)(b) = 0 (i = 1, . . . , n − m), then

lim inf
t→b

|w(t)| = 0.

Lemmas 2.1, 2.2 are proved in [1], Lemmas 2.3, 2.4 are proved in [6]. The
proof of Lemma 2.6 can be found in [4]. As for Lemma 2.5, it is a particular
case of Lemma 4.1 from [3].
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3. Proofs

Proof of Theorem 1.3. Let u be a solution of the problem (1.1), (1.2). Then
in view of Theorem 1.1, the inclusion u ∈ C̃n m−1(]a, b[) holds, i.e.,

ρ =

b∫

a

|u(m)(s)|2 ds < +∞. (3.1)

Multiplying the equation (1.1) by (−1)n−m(t − a)n−2mu(t) and then inte-
grating from t0 to t1, by Lemma 2.5 we obtain

wn(t)−wn(s)+νn

t∫

s

|u(m)(ξ)|2 dξ=(−1)n−m

t∫

s

(s−a)n−2mq(s)u(s) ds+

+(−1)n−m
m∑

j=1

t∫

s

(ξ − a)n−2mpj(ξ)u(j−1)(τj(ξ))u(ξ) dξ (3.2)

for a < s ≤ t < b. Hence by Lemma 2.6 it is evident that

lim inf
s→a

|wn(s)| = 0, lim inf
t→b

|wn(t)| = 0. (3.3)

Moreover, due to the conditions (1.10) and (1.11), a number ν ∈ ]0, 1[ can
be chosen so that the inequalities

B0 ≡
m∑

j=1

(
l0j

(2m− j)22m−j+1

(2m− 1)!!(2m− 2j + 1)!!
+ l0jβj(t∗ − a, γ0j)

)
<

< (νn − ν)/2,

B1 ≡
m∑

j=1

(
l1j

(2m− j)22m−j+1

(2m− 1)!!(2m− 2j + 1)!!
+ l1jβj(b− t∗, γ1j)

)
<

< (νn − ν)/2,

(3.4)

would be satisfied, and then

0 < ν < νn − 2max{B0, B1}. (3.5)

It is obvious that the maximum of ν depends only on the numbers lkj , lkj ,
γkj (k = 1, 2; j = 1, . . . ,m), and a, b, t∗, n. Now, if we put c = (a + b)/2,
then by virtue of Lemmas 2.1, 2.2, and Young’s inequality we get

∣∣∣∣
t∫

s

(ψ − a)n−2mq(ψ)u(ψ) dψ

∣∣∣∣ ≤

≤
∣∣∣∣

c∫

s

(ψ − a)n−2mq(ψ)u(ψ) dψ

∣∣∣∣ +
∣∣∣∣

t∫

c

(ψ − a)n−2mq(ψ)u(ψ) dψ

∣∣∣∣ =
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=
∣∣∣∣

c∫

s

[
(n− 2m)u(ψ) + (ψ − a)n−2mu′(ψ)

]( c∫

ψ

q(ξ) dξ
)

dψ

∣∣∣∣+

+
∣∣∣∣

t∫

c

[
(n− 2m)u(ψ) + (ψ − a)n−2mu′(ψ)

]( ψ∫

c

q(ξ) dξ
)

dψ

∣∣∣∣ ≤

≤
[
(n− 2m)

( c∫

s

u2(ψ)
(ψ − a)2m

dψ
)1/2

+
( c∫

s

u′2(ψ)
(ψ − a)2m−2

dψ
)1/2

]
×

×
( c∫

s

(ψ − a)2n−2m−2
( c∫

ψ

q(ξ) dξ
)2

dψ

)1/2

+

+(1+b−a)
[
(n−2m)

( t∫

c

u2(ψ)
(b−ψ)2m

dψ
)1/2

+
( t∫

c

u′2(ψ)
(b−ψ)2m−2

dψ
)1/2

]
×

×
( t∫

c

(b− ψ)2m−2
( ψ∫

c

q(ξ) dξ
)2

dψ

)1/2

≤

≤ (1 + b− a)(2n− 2m− 1)2m−1

(2m− 1)!!
‖q‖L̃2

2n−2m−2,2m−2
×

×
[( c∫

a

|u(m)(s)|2 ds
)1/2

+
( b∫

c

|u(m)(s)|2 ds
)1/2

]
≤ ν

2

b∫

a

|u(m)(s)|2 ds+

+
1
2ν

( (1 + b− a)(2n− 2m− 1)2m

(2m− 1)!!

)2

‖q‖2
L̃2

2n−2m−2,2m−2
(3.6)

for a < s ≤ t∗ ≤ t < b. Due to Lemmas 2.3 and 2.4 with a0 = t∗, t0 = a,
b0 = t∗, t1 = b, pj(t) = (t−a)n−2m(−1)n−mpj(t), and the equalities ρ0(a) =
ρ1(b) = 0, µj(a, b, t) = τj(t), we have

(−1)n−m

t∫

s

(ξ − a)n−2mpj(ξ)u(j−1)(τj(ξ))u(ξ) dξ ≤

≤ l0jβj(t∗ − a, γ0j)ρ
1/2
0 (b)ρ1/2

0 (t∗)+

+ l0j
(2m−j)22m−j+1

(2m−1)!!(2m−2j+1)!!
ρ0(t∗)+l1jβj(b−t∗, γ1j)ρ

1/2
1 (a)ρ1/2

1 (t∗)+

+ l1j
(2m− j)22m−j+1

(2m− 1)!!(2m− 2j + 1)!!
ρ1(t∗) (3.7)
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for a < s ≤ t∗ ≤ t < b. Thus according to (3.3)–(3.7), and the inequalities
ρ
1/2
0 (b)ρ1/2

0 (t∗) ≤ ρ, ρ
1/2
1 (a)ρ1/2

1 (t∗) ≤ ρ, we have the estimate

νnρ ≤ (νn − ν)ρ +
ν

2
ρ+

+
1
2ν

( (1 + b− a)(2n− 2m− 1)2m

(2m− 1)!!

)2

‖q‖2
L̃2

2n−2m−2,2m−2
. (3.8)

From (3.5) and (3.8) it immediately follows that

‖u(m)‖L2 ≤ rν‖q‖L̃2
2n−2m−2,2m−2

for 0 < ν < νn − 2max{B0, B1}, (3.9)

where rν = [(1 + b− a)(2n− 2m− 1)2m]/[ν(2m− 1)!!]. Thus from (3.9) we
obtain

‖u(m)‖L2 ≤ r‖q‖L̃2
2n−2m−2,2m−2

, (3.10)

where

r =
(1 + b− a)(2n− 2m− 1)2m

(νn − 2max{B0, B1})(2m− 1)!!
.

Hence, by the definition of the numbers νn, B0, B1, it is clear that r depends
only on the numbers lkj , lkj , γkj (k = 1, 2; j = 1, . . . , m), and a, b, t∗, n. ¤

The proof of Theorem 1.4 is analogous to that of Theorem 1.3. The only
difference is that instead of Theorem 1.1, Theorem 1.2 is applied, and we
put t = c = b.
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Belgacem Rebiai

INVARIANT DOMAINS AND GLOBAL
EXISTENCE FOR REACTION-DIFFUSION
SYSTEMS WITH A TRIDIAGONAL MATRIX
OF DIFFUSION COEFFICIENTS



Abstract. The aim of this study is to prove the global existence of
solutions for reaction-diffusion systems with a tridiagonal matrix of diffusion
coefficients and nonhomogeneous boundary conditions. Towards this end,
we make use of the appropriate techniques which are based on the invariant
domains and on Lyapunov functional methods. The nonlinear reaction term
has been supposed to be of polynomial growth. This result is a continuation
of that due to Kouachi and Rebiai [13].

2010 Mathematics Subject Classification. 35K45, 35K57.
Key words and phrases. Reaction diffusion systems, invariant do-

mains, Lyapunov functionals, global existence.

îâäæñéâ. êŽöîëéæï éæäŽêæŽ áŽéðçæùáâï áæòñäææï çëâòæùæâêðâĲæï ðîæ-
áæŽàëêŽèñîæ éŽðîæùæŽêæ îâŽóùæñè-áæòñäæñîæ ïæïðâéâĲæï àèëĲŽèñîæ Žéë-
êŽýïêâĲæï ŽîïâĲëĲŽ ŽîŽâîåàãŽîëãŽê ïŽïŽäôãîë ìæîëĲâĲöæ. Žé éæäêæå àŽéë-
æõâêâĲŽ öâïŽĲŽéæïæ ðâóêæçŽ, îëéâèæù áŽòñúêâĲñèæŽ æêãŽîæŽêðñè ŽîââĲäâ áŽ
èæŽìñêëãæï òñêóùæëêŽèæï éâåëáâĲäâ. ŽîŽûîòæãæ îâŽóùæñèæ ûâãîæï öâ-
ïŽýâĲ àŽçâåâĲñèæŽ áŽöãâĲŽ, îëé éæïæ äîáæï îæàæ ìëèæêëéæŽèñîæŽ. âï öâ-
áâàæ ûŽîéëáàâêï çñŽøæïŽ áŽ îâĲæŽæï [13] öâáâàæï àŽãîùâèâĲŽï.
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1. Introduction

We consider the reaction-diffusion system

∂u

∂t
− a11∆u− a12∆v = f(u, v, w) in R+ × Ω, (1.1)

∂v

∂t
− a21∆u− a22∆v − a23∆w = g(u, v, w) in R+ × Ω, (1.2)

∂w

∂t
− a32∆v − a33∆w = h(u, v, w) in R+ × Ω, (1.3)

with the boundary conditions

λu+(1−λ)
∂u

∂η
=β1, λv+(1−λ)

∂v

∂η
=β2, λw+(1−λ)

∂w

∂η
=β3, (1.4)

on R+ × ∂Ω,

and the initial data

u(0, x) = u0(x), v(0, x) = v0(x), w(0, x) = w0(x) in Ω, (1.5)

where

(i) 0 < λ < 1 and βi ∈ R, i = 1, 2, 3, for nonhomogeneous Robin
boundary conditions.

(ii) λ = βi = 0, i = 1, 2, 3, for homogeneous Neumann boundary condi-
tions.

(iii) 1 − λ = βi = 0, i = 1, 2, 3, for homogeneous Dirichlet boundary
conditions.

Ω is an open bounded domain of class C1 in RN with boundary ∂Ω and
∂
∂η denotes the outward normal derivative on ∂Ω. The diffusion terms aij

(i, j = 1, 2, 3 and (i, j) 6= (1, 3), (3, 1)) are supposed to be positive constants
such that

a12a21(a22 − a33) = a23a32(a11 − a22)

and
a33(a12 + a21)2 + a11(a23 + a32)2 < 4a11a22a33

which reflects the parabolicity of the system and implies at the same time
that the matrix of diffusion

A =




a11 a12 0
a21 a22 a23

0 a32 a33




is positive definite. The eigenvalues λ1, λ2 and λ3 (λ1 < λ2 = a22 < λ3) of
A are positive. If we put

a = min{a11, a33} and a = max{a11, a33},
then the positivity of the aij implies that

λ1 < a < λ2 < a < λ3.
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The initial data are assumed to be in the domain

Σ =





{
(u0, v0, w0) ∈ R3 : µiu0 + νiw0 ≤ v0, i = 1, 2, 3

}

if µiβ1 + νiβ3 ≤ β2, i = 1, 2, 3,{
(u0, v0, w0) ∈ R3 : µiu0 + νiw0 ≤ v0 ≤ µ1u0 + ν1w0, i = 2, 3

}

if µiβ1 + νiβ3 ≤ β2 ≤ µ1β1 + ν1β3, i = 2, 3,{
(u0, v0, w0) ∈ R3 : µiu0 + νiw0 ≤ v0 ≤ µ2u0 + ν2w0, i = 1, 3

}

if µiβ1 + νiβ3 ≤ β2 ≤ µ2β1 + ν2β3, i = 1, 3,{
(u0, v0, w0) ∈ R3 : µ3u0 + ν3w0 ≤ v0 ≤ µiu0 + νiw0, i = 1, 2

}

if µ3β1 + ν3β3 ≤ v0 ≤ µiβ1 + νiβ3, i = 1, 2,

where µ1 = a21/(a11−λ1) > 0 > µ2 = a21/(a11−λ2) > µ3 = a21/(a11−λ3),
ν1 = a23/(a33− λ1) > ν2 = a23/(a33− λ2) > 0 > ν3 = a23/(a33− λ3) , if we
assume without loss of generality that a11 < a33.

Since we use the same methods to treat all the cases, we will tackle only
with the first one. We suppose that the functions f, g and h are continuously
differentiable, polynomially bounded on Σ,

(
f(r1, r2, r3), g(r1, r2, r3), h(r1, r2, r3)

)
is in Σ for all (r1, r2, r3) in ∂Σ

(we say that (f, g, h) points into Σ on ∂Σ), i.e.,

µif(r1, r2, r3) + νih(r1, r2, r3) ≤ g(r1, r2, r3), (1.6)

for all r1, r2 and r3 such that µjr1 + νjr3 ≤ r2 = µir1 + νir3, j = 1, 2, 3
(j 6= i), i = 1, 2, 3, and for positive constants E and D, we have

(Ef + Dg + h)(u, v, w) ≤ C1(u + v + w + 1) (1.7)

for all (u, v, w) in Σ, where C1 is a positive constant.
In the two-component case, where a12 = 0, Kouachi and Youkana [14]

generalized the method of Haraux and Youkana [4] with the reaction terms
f(u, v) = −λF (u, v) and g(u, v) = +µF (u, v) with F (u, v) ≥ 0, requiring
the condition

lim
s→+∞

[ ln(1 + F (r, s))
s

]
< α∗ for any r ≥ 0,

with

α∗ =
2a11a22

n(a11 − a22)2‖u0‖∞ min
{λ

µ
,
a11 − a22

a21

}
,

where the positive diffusion coefficients a11, a22 satisfy a11 > a22 and a21, λ,
µ are positive constants. This condition reflects a weak exponential growth
of the function F . Kanel and Kirane [6] proved the global existence in
the case where g(u, v) = −f(u, v) = uvn and n is an odd integer, under
the embarrassing condition |a12 − a21| < Cp, where Cp contains a constant
from Solonnikov’s estimate [19]. Later, in [7] they improved their results to
obtain the global existence under the restrictions

H1. a22 < a11 + a21,
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H2. a12 < ε0 =
a11a22(a11 + a21 − a22)

a11a22 + a21(a11 + a21 − a22)
if a11 ≤ a22 < a11 + a21,

H3. a12 < min
{1

2
(a11 + a21), ε0

}
if a22 < a11,

and |F (v)| ≤ CF (1 + |v|1−ε), vF (v) ≥ 0 for all v ∈ R, where ε and CF are
positive constants with ε<1 and g(u, v)=−f(u, v)=uF (v).

Kouachi [12] has proved the global existence for solutions of two-compo-
nent reaction-diffusion systems with a general full matrix of diffusion co-
efficients and nonhomogeneous boundary conditions. Recently, we proved
the global existence for solutions of three-component reaction-diffusion sys-
tems with a tridiagonal matrix of diffusion coefficients and nonhomogeneous
boundary conditions where the positive diffusion coefficients a11, a33 are
equal (see Kouachi and Rebiai [13]).

The present investigation is a continuation work of that obtained in [13].
In this study we will treat the case where a11 6= a33.

We note that the case of strongly coupled systems which are not trian-
gular in the diffusion part is quite more difficult. As a consequence of the
blow-up of the solutions found in [17], we can indeed prove that there is
the blow-up of the solutions in finite time for such nontriangular systems
even though the initial data are regular, the solutions are positive and the
nonlinear terms are negative, a structure that ensured the global existence
in the diagonal case. For this purpose, we construct the invariant domains
in which we can demonstrate that for any initial data in those domains,
problem (1.1)–(1.5) is equivalent to the problem for which the global exis-
tence follows from the usual techniques based on Lyapunov functionals (see
Kirane and Kouachi [8], Kouachi and Youkana [14] and Kouachi [12]).

Many chemical and biological operations are described by means of re-
action diffusion systems with a tridiagonal matrix of diffusion coefficients.
The components u(t, x), v(t, x) and w(t, x) can be represented either by
chemical concentrations or biological population densities (see, e.g., Cussler
[1] and [2]). For example, in chemistry, an n-species reaction-diffusion sys-
tem with cross-diffusion can be described by the following system of partial
differential equations

∂ci

∂t
− div(∇Diici)−

∑

j 6=i

div(∇Dijcj) = Ri(c1, . . . , cn), i, j = 1, 2, . . . , n,

where Ri(c1, . . . , cn) are the reactive terms, Dii are the main-diffusion coeffi-
cients and the cross-diffusion term div(∇Dijcj) links the gradient of species
cj to the flux of species ci. If Dij ≥ 0 , then the ith species diffuses from
larger to smaller concentrations of the jth species, analogous to the case
of ordinary self-diffusion. If Dij < 0, then the ith species diffuses in the
opposite direction, against the gradient ∇cj .

Throughout this work, we denote by ‖·‖p, p ∈ [1, +∞[ the norm in Lp(Ω)
and ‖ · ‖∞ the norm in C(Ω) or L∞(Ω).
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2. The Local Existence and Invariant Domains

The study of local existence and uniqueness of solutions (u, v, w) of (1.1)–
(1.5) follows from the basic existence theory for parabolic semilinear equa-
tions (see, e.g., [3], [5] and [16]). As a consequence, for any initial data in
C(Ω) or L∞(Ω) there exists T ∗ ∈ ]0, +∞] such that (1.1)–(1.5) has a unique
classical solution on [0, T ∗[×Ω. Furthermore, if T ∗ < +∞, then

lim
t↑T∗

(‖u(t)‖∞ + ‖v(t)‖∞ + ‖w(t)‖∞
)

= +∞.

Therefore, if there exists a positive constant C such that

‖u(t)‖∞ + ‖v(t)‖∞ + ‖w(t)‖∞ ≤ C for all t ∈ [0, T ∗[ ,

then T ∗ = +∞.
Since the initial conditions are in Σ, then under the assumptions (1.6), the

next proposition says that the classical solution of (1.1)–(1.5) on [0, T ∗[×Ω
remains in Σ for all t in [0, T ∗[ .

Proposition 1. Suppose that (f, g, h) points into Σ on ∂Σ. Then for any
(u0, v0, w0) in Σ the solution (u, v, w) of the problem (1.1)–(1.5) remains in
Σ for all t in [0, T ∗[ .

Proof. Let (xi1, xi2, xi3)t, i = 1, 2, 3, be the eigenvectors of the matrix At

associate with its eigenvalues λi, i = 1, 2, 3 (λ1 < λ2 < λ3). Multiplying
equations (1.1), (1.2) and (1.3) of the given reaction-diffusion system by xi1,
xi2 and xi3, respectively, and summing the resulting equations, we get

∂

∂t
z1 − λ1∆z1 = F1(z1, z2, z3) in ]0, T ∗[×Ω, (2.1)

∂

∂t
z2 − λ2∆z2 = F2(z1, z2, z3) in ]0, T ∗[×Ω, (2.2)

∂

∂t
z3 − λ3∆z3 = F3(z1, z2, z3) in ]0, T ∗[×Ω, (2.3)

with the boundary conditions

λzi + (1− λ)
∂zi

∂η
= ρi, i = 1, 2, 3, on ]0, T ∗[×∂Ω, (2.4)

and the initial data

zi(0, x) = z0
i (x), i = 1, 2, 3, in Ω, (2.5)

where

zi = xi1u + xi2v + xi3w, i = 1, 2, 3, in ]0, T ∗[×Ω, (2.6)
ρi = xi1β1 + xi2β2 + xi3β3, i = 1, 2, 3,

and
Fi(z1, z2, z3) = xi1f + xi2g + xi3h, i = 1, 2, 3, (2.7)

for all (u, v, w) in Σ.
We note that the condition of the parabolicity of the system (1.1)–(1.3)

implies one of (2.1)–(2.3). Since λ1, λ2 and λ3 are the eigenvalues of the



Reaction-Diffusion Systems 85

matrix At, the problem (1.1)–(1.5) is equivalent to the problem (2.1)–(2.5),
and to prove that Σ is an invariant domain for the system (1.1)–(1.3) it
suffices to prove that the domain

{
(z0

1 , z0
2 , z0

3) ∈ R3 : z0
i ≥ 0, i = 1, 2, 3

}
= (R+)3 (2.8)

is invariant for the system (2.1)–(2.3) and there exist some constants xij ,
i, j = 1, 2, 3, such that

Σ =
{
(u0, v0, w0) ∈ R3 : z0

i = xi1u0+xi2v0+xi3w0 ≥ 0, i = 1, 2, 3
}
. (2.9)

Since (xi1, xi2, xi3)t is an eigenvector of the matrix At associated to the
eigenvalue λi, i = 1, 2, 3, we have

{
(a11 − λi)xi1 + a21xi2 = 0,

a23xi2 + (a33 − λi)xi3 = 0,
i = 1, 2, 3.

If we assume, without loss of generality, that a11 < a33 and choose x12 =
x22 = x32 = 1, then we have xi1u0 + xi2v0 + xi3w0 ≥ 0, i = 1, 2, 3 ⇐⇒
µiu0+νiw0 ≤ v0, i = 1, 2, 3. Thus (2.9) is proved and (2.6) can be written as

zi = −µiu + v − νiw, i = 1, 2, 3. (2.6a)

Now, to prove that the domain (R+)3 is invariant for the system (2.1)–(2.3),
it suffices to show that Fi(z1, z2, z3) ≥ 0 for all (z1, z2, z3) such that zi = 0
and zj ≥ 0, j = 1, 2, 3 (j 6= i), i = 1, 2, 3, thanks to the invariant domain
method (see Smoller [18]). Using the expressions (2.7), we get

Fi = −µif + g − νih, i = 1, 2, 3, (2.7a)

for all (u, v, w) in Σ. Since from (1.6) we have Fi(z1, z2, z3) ≥ 0 for all
(z1, z2, z3) such that zi = 0 and zj ≥ 0, j = 1, 2, 3 (j 6= i), i = 1, 2, 3, we
obtain zi(t, x) ≥ 0, i = 1, 2, 3, for all (t, x) ∈ [0, T ∗[×Ω. As a consequence,
Σ is an invariant domain for the system (1.1)–(1.3). ¤

In addition, the system (1.1)–(1.3) with the boundary conditions (1.4)
and initial data in Σ is equivalent to the system (2.1)–(2.3) with the boun-
dary conditions (2.4) and positive initial data (2.5).

Once the invariant domains are constructed and since ρi, i = 1, 2, 3,
given by ρi = −µiβ1 + β2 − νiβ3, i = 1, 2, 3, are positive, we can apply the
Lyapunov technique and establish the global existence of unique solutions
for (1.1)–(1.5).

3. Global Existence

As the determinant of the linear algebraic system (2.6), with respect to
variables u, v and w, is different from zero, to prove the global existence of
solutions of the problem (1.1)–(1.5) one needs to prove it for the problem
(2.1)–(2.5). To this end, it is well known that (see Henry [5]) it suffices to
derive a uniform estimate of ‖Fi(z1, z2, z3)‖p, i = 1, 2, 3, on [0, T ], T < T ∗,
for some p > N/2.
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Let θ and σ be two positive constants such that

θ > A12, (3.1)

(θ2 −A2
12)(σ

2 −A2
23) > (A13 −A12A23)2, (3.2)

where Aij = λi+λj

2
√

λiλj

, i, j = 1, 2, 3 (i < j), and let

θq = θq2
and σp = σp2

for q = 0, 1, . . . , p and p = 0, 1, . . . , n, (3.3)

with n as a positive integer. The main result of this section is

Theorem 1. Let (z1, z2, z3) be any positive solution of (2.1)–(2.5) on
[0, T ∗[×Ω; let the functional

t 7−→ L(t) =
∫

Ω

Hn

(
z1(t, x), z2(t, x), z3(t, x)

)
dx, (3.4)

where

Hn(z1, z2, z3) =
n∑

p=0

p∑
q=0

Cp
nCq

pθqσpz
q
1zp−q

2 zn−p
3 , (3.5)

with n being a positive integer and Cp
n = n!

(n−p)!p! .
Then, the functional L is uniformly bounded on [0, T ], T < T ∗.

For the proof of Theorem 1 we need some preparatory Lemmas.

Lemma 1. Let Hn be the homogeneous polynomial defined by (3.5).
Then

∂Hn

∂z1
= n

n−1∑
p=0

p∑
q=0

Cp
n−1C

q
pθq+1σp+1z

q
1zp−q

2 z
(n−1)−p
3 , (3.6)

∂Hn

∂z2
= n

n−1∑
p=0

p∑
q=0

Cp
n−1C

q
pθqσp+1z

q
1zp−q

2 z
(n−1)−p
3 , (3.7)

∂Hn

∂z3
= n

n−1∑
p=0

p∑
q=0

Cp
n−1C

q
pθqσpz

q
1zp−q

2 z
(n−1)−p
3 . (3.8)

Proof. Differentiating Hn with respect to z1 and using the fact that

qCq
p = pCq−1

p−1 and pCp
n = nCp−1

n−1 (3.9)

for q = 1, 2, . . . , p, p = 1, 2, . . . , n, we get

∂Hn

∂z1
= n

n∑
p=1

p∑
q=1

Cp−1
n−1C

q−1
p−1θqσpz

q−1
1 zp−q

2 zn−p
3 .

Replacing in the sums the indices q − 1 by q and p − 1 by p, we deduce
(3.6). For the formula (3.7), differentiating Hn with respect to z2, taking
into account

Cq
p = Cp−q

p , q = 0, 1, . . . , p− 1 and p = 1, 2, . . . , n, (3.10)
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using (3.9) and replacing the index p− 1 by p, we get (3.7).
Finally, we have

∂Hn

∂z3
=

n−1∑
p=0

p∑
q=0

(n− p)Cp
nCq

pθqσpz
q
1zp−q

2 zn−p−1
3 .

Since (n− p)Cp
n = (n− p)Cn−p

n = nCn−p−1
n−1 = nCp

n−1, we get (3.8). ¤

Lemma 2. The second partial derivatives of Hn are given by

∂2Hn

∂z2
1

= n(n− 1)
n−2∑
p=0

p∑
q=0

Cp
n−2C

q
pθq+2σp+2z

q
1zp−q

2 z
(n−2)−p
3 , (3.11)

∂2Hn

∂z1∂z2
= n(n− 1)

n−2∑
p=0

p∑
q=0

Cp
n−2C

q
pθq+1σp+2z

q
1zp−q

2 z
(n−2)−p
3 , (3.12)

∂2Hn

∂z1∂z3
= n(n− 1)

n−2∑
p=0

p∑
q=0

Cp
n−2C

q
pθq+1σp+1z

q
1zp−q

2 z
(n−2)−p
3 , (3.13)

∂2Hn

∂z2
2

= n(n− 1)
n−2∑
p=0

p∑
q=0

Cp
n−2C

q
pθqσp+2z

q
1zp−q

2 z
(n−2)−p
3 , (3.14)

∂2Hn

∂z2∂z3
= n(n− 1)

n−2∑
p=0

p∑
q=0

Cp
n−2C

q
pθqσp+1z

q
1zp−q

2 z
(n−2)−p
3 , (3.15)

∂2Hn

∂z2
3

= n(n− 1)
n−2∑
p=0

p∑
q=0

Cp
n−2C

q
pθqσpz

q
1zp−q

2 z
(n−2)−p
3 . (3.16)

Proof. Differentiating ∂Hn

∂z1
given by (3.6) with respect to z1, we obtain

∂2Hn

∂z2
1

= n

n−1∑
p=1

p∑
q=1

qCp
n−1C

q
pθq+1σq+1z

q−1
1 zp−q

2 z
(n−1)−p
3 .

Using (3.9), we get (3.11).

∂2Hn

∂z1∂z2
= n

n−1∑
p=1

p−1∑
q=0

(p− q)Cp
n−1C

q
pθq+1σp+1z

q
1zp−q−1

2 z
(n−1)−p
3 .

Applying (3.10) and then (3.9), we get (3.12).

∂2Hn

∂z1∂z3
= n

n−2∑
p=0

p∑
q=0

((n− 1)− p)Cp
n−1C

q
pθq+1σp+1z

q
1zp−q

2 z
(n−2)−p
3 .

Applying successively (3.10), (3.9) and (3.10) for the second time, we de-
duce (3.13).



88 Belgacem Rebiai

∂2Hn

∂z2
2

= n

n−1∑
p=1

p−1∑
q=0

(p− q)Cp
n−1C

q
pθqσp+1z

q
1zp−q−1

2 z
(n−1)−p
3 .

The application of (3.10) and then (3.9) yields (3.14).

∂2Hn

∂z2∂z3
= n

n−2∑
p=0

p∑
q=0

((n− 1)− p)Cp
n−1C

q
pθqσpz

q
1zp−q

2 z
(n−2)−p
3 .

Applying (3.10) and then (3.9), we get (3.15). Finally, we get (3.16) by
differentiating ∂Hn

∂z3
with respect to z3 and applying successively (3.10), (3.9)

and (3.10) for the second time. ¤

Proof of Theorem 1. Differentiating L with respect to t, we find that

L′(t) =
∫

Ω

(∂Hn

∂z1

∂z1

∂t
+

∂Hn

∂z2

∂z2

∂t
+

∂Hn

∂z3

∂z3

∂t

)
dx =

=
∫

Ω

(
λ1

∂Hn

∂z1
∆z1 + λ2

∂Hn

∂z2
∆z2 + λ3

∂Hn

∂z3
∆z3

)
dx+

+
∫

Ω

(∂Hn

∂z1
F1 +

∂Hn

∂z2
F2 +

∂Hn

∂z3
F3

)
dx =: I + J,

Using Green’s formula in I, we get I = I1 + I2, where

I1 =
∫

∂Ω

(
λ1

∂Hn

∂z1

∂z1

∂η
+ λ2

∂Hn

∂z2

∂z2

∂η
+ λ3

∂Hn

∂z3

∂z3

∂η

)
ds,

where ds denotes the (n− 1)-dimensional surface element, and

I2 = −
∫

Ω

[
λ1

∂2Hn

∂z2
1

|∇z1|2 + (λ1 + λ2)
∂2Hn

∂z1∂z2
∇z1∇z2+

+ (λ1 + λ3)
∂2Hn

∂z1∂z3
∇z1∇z3 + λ2

∂2Hn

∂z2
2

|∇z2|2+

+ (λ2 + λ3)
∂2Hn

∂z2∂z3
∇z2∇z3 + λ3

∂2Hn

∂z2
3

|∇z3|2
]

dx.

We prove that there exists a positive constant C2 independent of t ∈ [0, T ∗[
such that

I1 ≤ C2 for all t ∈ [0, T ∗[ , (3.17)
and that

I2 ≤ 0. (3.18)
To see this, we follow the same reasoning as in [11].

(i) If 0 < λ < 1, using the boundary conditions (2.4), we get

I1 =
∫

∂Ω

(
λ1

∂Hn

∂z1
(γ1−αz1)+λ2

∂Hn

∂z2
(γ2−αz2)+λ3

∂Hn

∂z3
(γ3−αz3)

)
ds,

where α = λ
1−λ and γi = ρi

1−λ , i = 1, 2, 3. Since
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H(z1, z2, z3) = λ1
∂Hn

∂z1
(γ1 − αz1) + λ2

∂Hn

∂z2
(γ2 − αz2)+

+ λ3
∂Hn

∂z3
(γ3 − αz3) = Pn−1(z1, z2, z3)−Qn(z1, z2, z3),

where Pn−1 and Qn are polynomials with positive coefficients and
respective degrees n − 1 and n, and since the solution is positive,
we obtain

lim sup
(|z1|+|z2|+|z3|)→+∞

H(z1, z2, z3) = −∞, (3.19)

which proves that H is uniformly bounded on (R+)3, and conse-
quently (3.17).

(ii) If λ = 0, then I1 = 0 on [0, T ∗[ .

(iii) The case of homogeneous Dirichlet conditions is trivial, since in this
case the positivity of the solution on [0, T ∗[×Ω implies ∂z1/∂η ≤ 0,
∂z2/∂η ≤ 0 and ∂z3/∂η ≤ 0 on [0, T ∗[×∂Ω. Consequently, one
again gets (3.17) with C2 = 0.

We now prove (3.18). Applying Lemma 2, we obtain

I2 = −n(n− 1)
∫

Ω

n−2∑
p=0

p∑
q=0

Cp
n−2C

q
p

[
(Bpqz) · z]

dx,

where

Bpq =




λ1θq+2σp+2
λ1 + λ2

2
θq+1σp+2

λ1 + λ3

2
θq+1σp+1

λ1 + λ2

2
θq+1σp+2 λ2θqσp+2

λ2 + λ3

2
θqσp+1

λ1 + λ3

2
θq+1σp+1

λ2 + λ3

2
θqσp+1 λ3θqσp




for q = 0, 1, . . . , p, p = 0, 1, . . . , n− 2 and z = (∇z1,∇z2,∇z3)t.
The quadratic forms (with respect to ∇z1,∇z2 and ∇z3) associated with

the matrices Bpq, q = 0, 1, . . . , p, p = 0, 1, . . . , n − 2, are positive, since
their main determinants ∆1, ∆2 and ∆3 are positive too, according to the
Sylvester criterion. To see this, we have

1) ∆1 = λ1θq+2σp+2 > 0 for q = 0, 1, . . . , p p = 0, 1, . . . , n− 2.

2) ∆2=

∣∣∣∣∣∣∣

λ1θq+2σp+2
λ1+λ2

2
θq+1σp+2

λ1+λ2

2
θq+1σp+2 λ2θqσp+2

∣∣∣∣∣∣∣
=λ1λ2θ

2
q+1σ

2
p+2(θ

2−A2
12),

for q = 0, 1, . . . , p and p = 0, 1, . . . , n− 2.
Using (3.1), we get ∆2 > 0.
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3) ∆3 =

∣∣∣∣∣∣∣∣∣∣

λ1θq+2σp+2
λ1+λ2

2
θq+1σp+2

λ1+λ3

2
θq+1σp+1

λ1+λ2

2
θq+1σp+2 λ2θqσp+2

λ2+λ3

2
θqσp+1

λ1+λ3

2
θq+1σp+1

λ2+λ3

2
θqσp+1 λ3θqσp

∣∣∣∣∣∣∣∣∣∣

=

= λ1λ2λ3θ
2
q+1θqσp+2σ

2
p+1

[
(θ2 −A2

12)(σ
2 −A2

23)− (A13 −A12A23)2
]
,

for q = 0, 1, . . . , p and p = 0, 1, . . . , n− 2.
Using (3.2), we get ∆3 > 0. Consequently we have (3.18).

Substitution of the expressions of the partial derivatives given by Lemma 1
in the second integral yields

J =
∫

Ω

[
n

n−1∑
p=0

p∑
q=0

Cp
n−1C

q
pzq

1zp−q
2 z

(n−1)−p
3 ]×

× (θq+1σp+1F1 + θqσp+1F2 + θqσpF3) dx.

Using the expressions (2.7a), we obtain

θq+1σp+1F1+θqσp+1F2+θqσpF3=−(µ1θq+1σp+1+µ2θqσp+1+µ3θqσp)f+

+ (θq+1σp+1 + θqσp+1 + θqσp)g − (ν1θq+1σp+1 + ν2θqσp+1 + ν3θqσp)h =

= −θq+1σp+1

(
ν1 + ν2

θq

θq+1
+ ν3

θq

θq+1

σp

σp+1

)
×

×
(µ1 + µ2

θq

θq+1
+ µ3

θq

θq+1

σp

σp+1

ν1 + ν2
θq

θq+1
+ ν3

θq

θq+1

σp

σp+1

f −
1 + θq

θq+1
+ θq

θq+1

σp

σp+1

ν1 + ν2
θq

θq+1
+ ν3

θq

θq+1

σp

σp+1

g + h

)
.

Since θq

θq+1
and σp

σp+1
are sufficiently large if we choose θ and σ sufficiently

large, by using the condition (1.7) and the relation (2.6a) successively, for
an appropriate constant C3, we get

J ≤ C3

∫

Ω

[ n−1∑
p=0

p∑
q=0

(z1 + z2 + z3 + 1)Cp
n−1C

q
pzq

1zp−q
2 z

(n−1)−p
3

]
dx.

To prove that the functional L is uniformly bounded on the interval [0, T ],
we first write

n−1∑
p=0

p∑
q=0

(z1 + z2 + z3 + 1)Cp
n−1C

q
pzq

1zp−q
2 z

(n−1)−p
3 =

= Rn(z1, z2, z3) + Sn−1(z1, z2, z3),

where Rn(z1, z2, z3) and Sn−1(z1, z2, z3) are two homogeneous polynomi-
als of degrees n and n − 1, respectively. First, since the polynomials Hn

and Rn are of degree n, there exists a positive constant C4 such that∫
Ω

Rn(z1, z2, z3) dx ≤ C4

∫
Ω

Hn(z1, z2, z3) dx. Applying Hölder’s inequality
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to the integral
∫
Ω

Sn−1(z1, z2, z3) dx, one gets

∫

Ω

Sn−1(z1, z2, z3) dx ≤ (meas Ω)
1
n

( ∫

Ω

(
Sn−1(z1, z2, z3)

) n
n−1 dx

)n−1
n

.

Since for all z1 ≥ 0 and z2, z3 > 0,

(Sn−1(z1, z2, z3))
n

n−1

Hn(z1, z2, z3)
=

(Sn−1(ξ1, ξ2, 1))
n

n−1

Hn(ξ1, ξ2, 1)
,

where ξ1 = z1/z2, ξ2 = z2/z3 and

lim
ξ1→+∞
ξ2→+∞

(Sn−1(ξ1, ξ2, 1))
n

n−1

Hn(ξ1, ξ2, 1)
< +∞,

one asserts that there exists a positive constant C5 such that

(Sn−1(z1, z2, z3))
n

n−1

Hn(z1, z2, z3)
≤ C5 for all z1, z2, z3 ≥ 0.

Due to (3.19), there exist ηi, i = 1, 2, 3, such that for all zi > ηi the
functional L satisfies the differential inequality L′(t) ≤ C6L(t)+C7L

n−1
n (t),

which for Z = L
1
n can be written as nZ ′ ≤ C6Z + C7. A simple integration

gives a uniform bound of the functional L on the interval [0, T ].
On the other hand, if zi is in the compact interval [0, ηi], then the con-

tinuous function (z1, z2, z3) 7−→ Hn(z1, z2, z3) is bounded. Thus, the func-
tional L is uniformly bounded on [0, T ]. This completes the proof of Theo-
rem 1. ¤

Corollary 1. Suppose that the functions f , g and h are continuously
differentiable on Σ, point into Σ on ∂Σ and satisfy the condition (1.7).
Then all uniformly bounded solutions on Ω of (1.1)–(1.5) with initial data
in Σ are in L∞(0, T ; Lp(Ω)) for all p ≥ 1.

Proof. The proof of this Corollary is an immediate consequence of Theo-
rem 1, the trivial inequality

∫
Ω

(z1+z2+z3)p dx≤L(t) on [0, T ∗[ , and (2.6a). ¤

Proposition 2. Under the hypothesis of Corollary 1, if the functions f ,
g and h are polynomially bounded on Σ, then all uniformly bounded solutions
on Ω of (1.1)–(1.4) with the initial data in Σ are global in time.

Proof. As it has been mentioned above, it suffices to derive a uniform es-
timate of ‖F1(z1, z2, z3)‖p, ‖F2(z1, z2, z3)‖p and ‖F3(z1, z2, z3)‖p on [0, T ],
T < T ∗ for some p > N

2 . Since the reaction terms f(u, v, w), g(u, v, w) and
h(u, v, w) are polynomially bounded on Σ, by using the relations (2.6a) and
(2.7a) we get that such are F1(z1, z2, z3), F2(z1, z2, z3) and F3(z1, z2, z3),
and the proof becomes an immediate consequence of Corollary 1. ¤

Acknowledgement. The author would like to thank the anonymous ref-
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îâäæñéâ. êŽöîëéæ âúôãêâĲŽ éâëîâ îæàæï ŽîŽûîòæãæ òñêóùæëêŽèñî áæ-
òâîâêùæŽèñîæ àŽêðëèâĲãĲæï áŽáâĲæåæ ŽéëêŽýïêâĲæï Žïæéìðëðñî ŽêŽèæäï
îâàñèŽîñèæ ãŽîæŽùææï øŽîøëâĲöæ. êŽøãâêâĲæŽ, îëé àŽêýæèñèæ àŽêðëèâ-
ĲâĲæï öñŽèâáñîæ áŽáâĲæåæ ŽéëêŽýïêâĲæï Žïæéìðëðñîæ õæòŽóùâãŽ öâæúèâĲŽ
áŽáàâêæè æóêŽï çŽîŽéŽðŽï æêðâàîæîâĲæï åâëîâéæïŽ áŽ ñúîŽãæ ûâîðæèæï
ðâóêæçæï öâîûõéæå.
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1. Introduction

This paper is devoted to the study of the existence and asymptotic be-
havior of positive solutions of second order Emden–Fowler type functional
differential equations of the form

x′′(t) + q(t)|x(g(t))|γsgn x(g(t)) = 0, (A)

where

(a) γ is a positive constant less than 1,

(b) q : [a,∞) → (0,∞) is a continuous function, a > 0,

(c) g : [a,∞) → (0,∞) is a continuous increasing function such that

g(t) < t and lim
t→∞

g(t) = ∞.

This equation (A) is called sublinear. Equation (A) with γ > 1 is said to
be superlinear.

By a proper solution of equation (A) we mean a function x(t) which is
defined in a neighborhood of infinity and is nontrivial in the sense that

sup
{|x(t)| : t = T

}
> 0 for any sufficiently large T > a.

A proper solution of (A) is said to be oscillatory if it has an infinite se-
quence of zeros clustering at infinity and nonoscillatory otherwise. Thus a
nonoscillatory solution is eventually positive or negative.

We are interested in the existence and asymptotic behavior of possible
nonoscillatory solutions of (A). If x(t) is a solution of (A), then so is −x(t),
and hence in studying nonoscillatory solutions it suffices to restrict our
consideration to positive solutions. It is known that any positive solution
x(t) falls into one of the following three types:

(I) lim
t→∞

x(t) = const > 0,

(II) lim
t→∞

x(t) = ∞, lim
t→∞

x(t)
t

= 0,

(III) lim
t→∞

x(t)
t

= const > 0.

Our primary concern in this paper will be with type (II)-solutions, which
are referred to as intermediate solutions of (A), because the other two types
of solutions are fully understood as the following statements show:

(i) (A) has solutions of type (I) if and only if
∞∫
a

tq(t) dt < ∞;

(ii) (A) has solutions of type (III) if and only if
∞∫
a

g(t)γq(t) dt < ∞.

It seems to be very difficult to obtain detailed information about the
existence of intermediate solutions of (A) having precise asymptotic behav-
ior at infinity in the case of general positive continuous q(t), and hence we
limit ourselves to the case where the coefficient q(t) is a regularly varying
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function (in the sense of Karamata) and focus our attention on regularly
varying solutions of (A). Analyzing equation (A) in the framework of regular
variation was motivated by a recent interesting paper [2] in which complete
analysis has been made of positive regularly varying solutions of type (II)
of the sublinear Emden–Folwer equation

x′′ + q(t)|x|γsgn x = 0,

under the assumption that q(t) is regularly varying.
It is natural to obtain the desired solutions of (A) by solving the integral

equation

x(t) = x0 +

t∫

T0

∞∫

s

q(r)x(g(r))γ dr ds, t = T0, (B)

where x0 > 0 and T0 > a. Note that any type (II)-solution of (A) satisfies
(B) for some x0 and T0. In view of the difficulty in the analysis of (B) for
general retarded argument g(t) we confine our attention to the class of g(t)
such that

lim
t→∞

g(t)
t

= 1. (1.1)

Associated with (B) is the following integral asymptotic relation

x(t) ∼
t∫

T0

∞∫

s

q(r)x(g(r))γ dr ds, t →∞, (C)

which is regarded as an approximation at infinity of (B). Here and through-
out, the symbol ∼ is used to mean the asymptotic equivalence

f(t) ∼ g(t), t →∞ ⇐⇒ lim
t→∞

g(t)
f(t)

= 1.

It is shown that if q(t) is regularly varying and g(t) satisfies (1.1), then
one can acquire full knowledge of the structure of all possible regularly
varying solutions of (C), and that the results for (C) thus obtained play
a central role in establishing the existence of intermediate solutions with
accurate asymptotic behavior at infinity for equation (A).

Our main results are presented in Section 3 consisting of three subsec-
tions. The first subsection is devoted to the analysis of relation (C) with
regularly varying q(t) by means of regular variation under condition (1.1),
and three types of its regularly varying solutions are shown to exist. These
three types of solutions are effectively used in the second subsection to con-
struct three kinds of intermediate solutions for equation (A) with the help
of fixed point techniques. In the third subsection two kinds of intermedi-
ate solutions thus constructed will be verified to be regularly varying. The
definition and some basic properties of regularly varying functions will be
summarized in Section 2 of preliminary nature.
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2. Regularly Varying Functions

We state here the definition and some basic properties of regularly varying
functions which will be needed in developing our main results in the next
section.

Definition 2.1. A measurable function f : [0,∞) → (0,∞) is called
regularly varying of index ρ ∈ R if

lim
t→∞

f(λt)
f(t)

= λρ for all λ > 0.

The totality of regularly varying functions of index ρ is denoted by RV(ρ).
We often use the symbol SV to denote RV(0), and call members of SV
slowly varying functions. Any function f(t) ∈ RV(ρ) is written as f(t) =
tρg(t) with g(t) ∈ SV, and so the class SV of slowly varying functions is
of fundamental importance in the theory of regular variation. One of the
most important properties of regularly varying functions is the following
representation theorem.

Definition 2.2. f(t) ∈ RV(ρ) if and only if f(t) is represented in the
form

f(t) = c(t) exp
{ t∫

t0

δ(s)
s

ds

}
, t = t0,

for some t0 > 0 and for some measurable functions c(t) and δ(t) such that

lim
t→∞

c(t) = c0 ∈ (0,∞) and lim
t→∞

δ(t) = ρ.

If c(t) ≡ c0, then f(t) is referred to as a normalized regularly varying
function of index ρ, and is denoted by f(t) ∈ n-RV(ρ).

Typical examples of slowly varying functions are: all functions tending
to some positive constants as t →∞,

N∏
n=1

(logn t)αn , αn ∈ R, and exp
{ N∏

n=1

(logn t)βn

}
, βn ∈ (0, 1),

where logn t denotes the n-th iteration of the logarithm. It is known that
the function L(t) = exp

{
(log t)

1
3 cos (log t)

1
3
}

is a slowly varying function
which is oscillating in the sense that lim sup

t→∞
L(t) = ∞ and lim inf

t→∞
L(t) = 0.

The following result concerns operations which preserve slow variation.

Proposition 2.1. Let L(t), L1(t), L2(t) be slowly varying. Then, L(t)α

for any α ∈ R, L1(t) + L2(t), L1(t)L2(t) and L1(L2(t)) (if L2(t) →∞) are
slowly varying.

A slowly varying function may grow to infinity or decay to 0 as t →∞.
But its order of growth or decay is severely limited as is shown in the
following
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Proposition 2.2. Let f(t) ∈ SV. Then, for any ε > 0,

lim
t→∞

tεf(t) = ∞, lim
t→∞

t−εf(t) = 0.

A simple criterion for determining the regularity of differentiable positive
functions follows.

Proposition 2.3. A differentiable positive function f(t) is a normalized
regularly varying function of index ρ if and only if

lim
t→∞

t
f ′(t)
f(t)

= ρ.

The following result which is called Karamata’s integration theorem is
useful in handling slowly and regularly varying functions analytically.

Proposition 2.4. Let L(t) ∈ SV. Then,
(i) if α > −1,

t∫

a

sαL(s) ds ∼ 1
α + 1

tα+1L(t), t →∞.

(ii) if α < −1,
∞∫

t

sαL(s) ds ∼ − 1
α + 1

tα+1L(t), t →∞.

(iii) if α = −1,

l(t) =

t∫

a

L(s)
s

ds ∈ SV and lim
t→∞

L(t)
l(t)

= 0,

and

m(t) =

∞∫

t

L(s)
s

ds ∈ SV and lim
t→∞

L(t)
m(t)

= 0.

Definition 2.3. A function f(t) ∈ RV(ρ) is called a trivial regularly
varying function of index ρ if it is expressed in the form f(t) = tρL(t) with
L(t) ∈ SV satisfying lim

t→∞
L(t) = const > 0. Otherwise f(t) is called a

nontrivial regularly varying function of index ρ. The symbol tr-RV(ρ) (or
ntr-RV(ρ)) denotes the set of all trivial RV(ρ)-functions (or the set of all
nontrivial RV(ρ)-functions)

For the most complete exposition of the theory of regular variation and
its applications the reader is referred to the book of Bingham, Goldie and
Teugels [1]. See also Seneta [7]. A comprehensive survey of results up to
2000 on the asymptotic analysis of ordinary differential equations by means
of regular variation can be found in the monograph of Marić [6].
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3. Existence of Intermediate Solutions of Equation (A)

Intermediate solutions of (A), that is, positive solutions x(t) such that

lim
t→∞

x(t) = ∞ and lim
t→∞

x(t)
t

= 0, (3.1)

are constructed as solutions of the integral equation (B) under the assump-
tion that q(t) ∈ RV(σ) (σ ∈ R) and g(t) satisfy (1.1). For this purpose an
essential role is played by the fact that regularly varying solutions of the
integral asymptotic relation (C) satisfying (3.1) can be thoroughly analyzed
in the framework of regular variation. Throughout this section, the use is
made of the following expression for q(t)

q(t) = tσl(t), l(t) ∈ SV. (3.2)

3.1. Regularly varying solutions of asymptotic relation (C). Let
x(t) = tρξ(t), ξ(t) ∈ SV, be a regularly varying solution of (C) satisfying
(3.1). We see that ρ must satisfy ρ ∈ [0, 1], and that ξ(t) → ∞, t → ∞, if
ρ = 0 and ξ(t) → 0, t →∞, if ρ = 1, which means that x(t) must be in one
of the following three classes of regularly varying functions:

ntr− SV, RV(ρ) with ρ ∈ (0, 1), ntr− RV(1). (3.3)

One can establish the existence of these three kinds of regularly varying
solutions of (C) as the following theorems demonstrate.

Theorem 3.1. Relation (C) has nontrivial slowly varying solutions if
and only if σ = −2 and

∞∫

a

tq(t) dt = ∞, (3.4)

in which case any such solution x(t) has one and the same asymptotic be-
havior

x(t) ∼
[
(1− γ)

t∫

a

sq(s) ds

] 1
1−γ

, t →∞. (3.5)

Theorem 3.2. Relation (C) has regularly varying solutions of index ρ ∈
(0, 1) if and only if σ ∈ (−2,−γ − 1), in which case ρ is given by

ρ =
σ + 2
1− γ

(3.6)

and any such solution x(t) has one and the same asymptotic behavior

x(t) ∼
[ t2q(t)
ρ(1− ρ)

] 1
1−γ

, t →∞. (3.7)
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Theorem 3.3. Relation (C) has nontrivial regularly varying solutions of
index 1 if and only if σ = −γ − 1 and

∞∫

a

tγq(t) dt < ∞, (3.8)

in which case any such solution x(t) has one and the same asymptotic be-
havior

x(t) ∼ t

[
(1− γ)

∞∫

t

sγq(s) ds

] 1
1−γ

, t →∞. (3.9)

Lemma 3.1. If f(t) is regularly varying and g(t) satisfies (1.1), then
f(g(t)) ∼ f(t) as t →∞.

Proof. Suppose that f(t) ∈ RV(ρ). Then by Proposition 2.1 it is ex-
pressed as

f(t) = c(t) exp
{ t∫

t0

δ(s)
s

ds

}
, t = t0,

for some constant t0 > 0 and some functions c(t) and δ(t) such that c(t) →
c0 > 0 and δ(t) → ρ as t →∞. Then, we have

f(g(t))
f(t)

=
c(g(t))
c(t)

exp
{
−

t∫

g(t)

δ(s)
s

ds

}
, t = t0. (3.10)

Noting that |δ(t)| 5 k, t = t0, for some constant k > 0, we see because of
(1.1) that

∣∣∣∣
t∫

g(t)

δ(s)
s

ds

∣∣∣∣ 5 k

∣∣∣∣
t∫

g(t)

ds

s

∣∣∣∣ 5 k log
∣∣∣ t

g(t)

∣∣∣ −→ 0, t →∞,

which, combined with (3.10), implies that f(g(t))/f(t) → 1 or f(g(t)) ∼
f(t) as t →∞. This completes the proof. ¤

Proof of the “only if” parts of Theorems 3.1, 3.2 and 3.3. Let x(t)= tρξ(t),
ξ(t) ∈ SV, be a solution of (C) satisfying (3.1). Using (3.2) and Lemma 3.1,
we have

∞∫

t

q(s)x(g(s))γ ds∼
∞∫

t

q(s)x(s)γ ds=

∞∫

t

sσ+ργ l(s)ξ(s)γ ds, t→∞. (3.11)

The convergence of the last integral in (3.11) implies σ + ργ 5 −1.
(i) We first consider the case where σ + ργ = −1. Then, since

∞∫

t

s−1l(s)ξ(s)γ ds ∈ SV,
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we have by Karamata’s integration theorem ((i) of Proposition 2.5)

t∫

T0

∞∫

s

r−1l(r)ξ(r)γ dr ds ∼ t

∞∫

t

s−1l(s)ξ(s)γ ds,

and hence by (C)

x(t) ∼ t

∞∫

t

s−1l(s)ξ(s)γ ds ∈ RV(1), t →∞. (3.12)

This means that ρ = 1, so that σ = −γ − 1. From (3.12) we see that

ξ(t) ∼
∞∫

t

s−1l(s)ξ(s)γ ds, t →∞. (3.13)

Let η(t) denote the right-hand side of (3.13). Then, we obtain the following
differential asymptotic relation for η(t):

−η(t)−γη′(t) ∼ t−1l(t) = tγq(t), t →∞. (3.14)

Since the left-hand side of (3.14) is integrable on [T0,∞), so is tγq(t), which
shows that (3.8) is satisfied, and integrating (3.14) from t to ∞, we obtain

ξ(t) ∼ η(t) ∼
[
(1− γ)

∞∫

t

sγq(s) ds

] 1
1−γ

, t →∞,

which, in view of (3.13), leads to

x(t) ∼ t

[
(1− γ)

∞∫

t

sγq(s) ds

] 1
1−γ

, t →∞,

implying that x(t) satisfies (3.9).
(ii) Next, we consider the case where σ + ργ < −1. Then, applying

Karamata’s integration theorem ((ii) of Proposition 2.5) to (3.11), we have

∞∫

t

q(s)x(s)γ ds ∼ tσ+ργ+1l(t)ξ(t)γ

−(σ + ργ + 1)
, t →∞. (3.15)

We distinguish the three cases:
(a) σ + ργ + 2 > 0,
(b) σ + ργ + 2 = 0,
(c) σ + ργ + 2 < 0.
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If (a) holds, then applying Karamata’s integration theorem to (3.15), we
find that

x(t) ∼
t∫

T0

∞∫

s

q(r)x(r)γ dr ds ∼

∼ tσ+ργ+2l(t)ξ(t)γ

[−(σ + ργ + 1)](σ + ργ + 2)
, t →∞, (3.16)

which shows that x(t) ∈ RV(σ + ργ + 2), where σ + ργ + 2 ∈ (0, 1). This
means that ρ = σ + ργ + 2 or ρ = (σ + 2)/(1 − γ), that is, ρ is given by
(3.6). From ρ ∈ (0, 1) the range of σ is determined to be σ ∈ (−2,−γ − 1).
Note that (3.16) is rewritten as

x(t) ∼ tσ+2l(t)x(t)γ

ρ(1− ρ)
=

t2q(t)x(t)γ

ρ(1− ρ)
,

from which it follows that

x(t) ∼
[

t2q(t)
ρ(1− ρ)

] 1
1−γ

, t →∞.

This shows that x(t) satisfies (3.7).

If (b) holds, then (3.15) takes the form
∞∫
t

q(s)x(s)γ ds ∼ t−1l(t)ξ(t)γ and

we have

x(t) ∼
t∫

T0

∞∫

s

q(r)x(r)γ dr ds ∼
t∫

T0

s−1l(s)ξ(s)γ ds ∈ SV, t →∞, (3.17)

which implies that ρ = 0, so that x(t) = ξ(t) and σ = −2. Denoting the
right-hand side of (3.17) by y(t), we obtain from (3.17)

y(t)−γy′(t) ∼ t−1l(t) = tq(t), t →∞. (3.18)

Noting that the left-hand side of (3.18) and hence tq(t) is not integrable on
[T0,∞) because y(t) →∞ as t →∞, we see that (3.4) holds and integrating
(3.18) on [T0, t] yields

x(t) ∼ y(t)∼
[
(1− γ)

t∫

T0

sq(s) ds

] 1
1−γ

∼
[
(1−γ)

t∫

a

sq(s) ds

] 1
1−γ

, t→∞,

showing that x(t) satisfies (3.5).
Finally, we note that case (c) is impossible. In fact, if (c) would hold,

then the last integral in (3.15) would be integrable over [T0,∞), which would
imply that x(t) tends to a constant as t → ∞, that is, x(t) ∈ ntr− SV, an
impossibility.

Let us now suppose that relation (C) admits a regularly varying solution
x(t) belonging to one of the three classes in (3.3). If x(t) ∈ ntr− SV and
x(t) → ∞, t → ∞, then from the above observations it is clear that x(t)



Functional Differential Equations in the Framework of Regular Variation 103

must fall into case (b) of (ii), which means that σ = −2 and (3.4) holds
and that the asymptotic behavior of x(t) is given by (3.5). Next, let (C)
have a solution x(t) ∈ RV(ρ) with ρ ∈ (0, 1). Then, only case (a) of (ii) is
admissible, showing that σ ∈ (−2,−γ − 1) and x(t) must satisfy (3.7) with
ρ defined by (3.6). Finally, if x(t) ∈ ntr− RV(1) and its slowly varying
part ξ(t) tends to 0 as t → ∞, then case (i) necessarily fits x(t), so that
σ = −γ − 1, (3.8) holds and the asymptotic behavior of x(t) is governed by
the formula (3.9). ¤

Proof of the “if” parts of Theorems 3.1, 3.2 and 3.3. Let X(t) denote any
one of the functions Xi(t), i = 1, 2, 3, defined on [a,∞) as follows:

X1(t) =
[
(1− γ)

t∫

a

sq(s) ds

] 1
1−γ

∈ SV, (3.19)

if σ = −2 and (3.4) holds,

X2(t) =
[ t2q(t)
ρ(1− ρ)

] 1
1−γ ∈ RV(ρ), (3.20)

if σ ∈ (−2,−γ − 1), where ρ =
σ + 2
1− γ

∈ (0, 1),

X3(t) = t

[
(1− γ)

∞∫

t

sγq(s) ds

] 1
1−γ

∈ RV(1), (3.21)

if σ = −γ − 1 and (3.8) holds.

It suffices to verify that X(t) satisfies the asymptotic relation

X(t) ∼
t∫

T

∞∫

s

q(r)X(g(r))γ dr ds ∼
t∫

T

∞∫

s

q(r)X(r)γ dr ds, t →∞, (3.22)

for any T > a such that g(t) = a for t = T , where the last relation follows
from Lemma 3.1 ensuring that X(g(t)) ∼ X(t) as t →∞.

Suppose that σ = −2 and (3.4) holds. Then, X1(t) satisfies
∞∫

t

q(s)X1(s)γ ds ∼ t−1l(t)

[
(1− γ)

t∫

a

s−1l(s) ds

] γ
1−γ

and hence
t∫

T

∞∫

s

q(r)X1(r)γ dr ds ∼
t∫

T

s−1l(s)
[
(1− γ)

s∫

a

r−1l(r) dr

] γ
1−γ

ds ∼

∼
[
(1−γ)

t∫

a

s−1l(s) ds

] 1
1−γ

=
[
(1−γ)

t∫

a

sq(s) ds

] 1
1−γ

= X1(t), t →∞.
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Suppose next that σ∈(−2,−γ−1). Rewriting X2(t) as X2(t) = tρ(l(t)/ρ(1−
ρ))

1
1−γ and applying Karamata’s integration theorem twice, we see that

∞∫

t

q(s)X2(s)γ ds =

∞∫
t

sρ−2l(s)
1

1−γ ds

(ρ(1− ρ))
γ

1−γ

∼ tρ−1l(t)
1

1−γ

(ρ(1− ρ))
γ

1−γ (1− ρ)
,

and
t∫

T

∞∫

s

q(r)X2(r) dr ds ∼ tρl(t)
1

1−γ

(ρ(1− ρ))
γ

1−γ (1− ρ)ρ
= X2(t), t →∞.

Suppose finally that σ = −γ − 1 and (3.8) holds. Then, using
∞∫

t

q(s)X3(s)γ ds =
[
(1− γ)

∞∫

t

sγq(s) ds

] 1
1−γ

,

we conclude via Karamata’s integration theorem that

t∫

T

∞∫

s

q(r)X3(r)γ dr ds ∼ t

[
(1− γ)

∞∫

t

sγq(s) ds

] 1
1−γ

= X3(t), t →∞.

This completes the proof of Theorems 3.1, 3.2 and 3.3. ¤

3.2. Construction of Intermediate Solutions of Equation (A). The
purpose of this subsection is to prove the existence of three kinds of interme-
diate solutions for equation (A) with regularly varying coefficient q(t) and
retarded argument g(t) satisfying (1.1), and furthermore to verify that two
kinds of them are really regularly varying solutions. Our discussions here
essentially depend on the results on regularly varying solutions of the as-
ymptotic relation (C) developed in the first subsection. We use the following
notation.

Notation 3.1. Let f(t) and g(t) be positive functions defined on [t0,∞).
We write f(t) ³ g(t), t → ∞, to denote that there exist positive constants
m and M such that mg(t) 5 f(t) 5 Mg(t) for t = t0. Clearly, f(t) ∼ g(t),
t → ∞, implies f(t) ³ g(t), t → ∞, but not conversely. If f(t) ³ g(t),
t →∞, and lim

t→∞
g(t) = 0, then lim

t→∞
f(t) = 0. Our main results follow.

Theorem 3.4. Suppose that q(t) ∈ RV(−2) satisfies (3.4) and g(t) sat-
isfies (1.1). Then equation (A) possesses an intermediate solution x(t)
such that

x(t) ³
[
(1− γ)

t∫

a

sq(s) ds

] 1
1−γ

, t →∞. (3.23)
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Theorem 3.5. Suppose that q(t) ∈ RV(σ) with σ ∈ (−2,−γ − 1) and
g(t) satisfies (1.1). Then equation (A) possesses an intermediate solution
x(t) such that

x(t) ³
[ t2q(t)
ρ(1− ρ)

] 1
1−γ

, t →∞, (3.24)

where ρ is given by (3.6).

Theorem 3.6. Suppose that q(t) ∈ RV(−γ − 1) satisfies (3.8) and g(t)
satisfies (1.1). Then, equation (A) possesses an intermediate solution x(t)
such that

x(t) ³ t

[
(1− γ)

∞∫

t

sγq(s) ds

] 1
1−γ

, t →∞. (3.25)

Proof of Theorems 3.4, 3.5 and 3.6. Under the assumptions of these theo-
rems one can define the functions Xi(t), i = 1, 2, 3, by (3.19), (3.20) or
(3.21). Let X(t) denote one of Xi(t), i = 1, 2, 3, depending on the indi-
cated values of σ. Since X(t) satisfies (3.22), there exists T0 > a such that
g(t) = a for t = T0 and

t∫

T0

∞∫

s

q(r)X(g(r))γ dr ds 5 2X(t), t = T0. (3.26)

We may assume that X(t) is increasing for t = g(T0). Using (3.21) again,
one can choose T1 > T0 such that

t∫

T0

∞∫

s

q(r)X(g(r))γ dr ds = 1
2

X(t), t = T1. (3.27)

Furthermore, choose positive constants k < 1 and K > 1 satisfying

k1−γ 5 1
2

, K1−γ = 4, kX(T1) 5 1
2

KX(g(T0)), (3.28)

and define the set X and the mapping F : X → C[g(T0),∞) as follows:

X =
{

x(t) ∈ C[g(T0),∞) : kX(t) 5 x(t) 5 KX(t), t = g(T0)
}

, (3.29)



Fx(t) = x0 +

t∫

T0

∞∫

s

q(r)x(g(t))γ dr ds, t = T0,

Fx(t) = x0, g(T0) 5 t 5 T0,

(3.30)

where x0 is a constant such that

kX(T1) 5 x0 5 1
2

KX(g(T0)). (3.31)

It can be shown that F is a continuous self-map of X which sends X into a
relatively compact subset of C[g(T0),∞).
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(i) F(X ) ⊂ X . This follows from the following calculations in which
(3.26)–(3.31) are used:

Fx(t) = x0 = kX(T1) = kX(t) for g(T0) 5 t 5 T1,

Fx(t) =
t∫

T0

∞∫

s

q(r)(kX(g(r)))γ dr ds = 1
2

kγX(t) = kX(t) for t = T1,

Fx(t) 5 1
2

KX(g(T0)) 5 1
2

KX(t) 5 KX(t) for g(T0) 5 t 5 T0,

Fx(t) 5 1
2

KX(T0) +

t∫

T0

∞∫

s

q(r)(KX(g(r)))γ dr ds

5 1
2

KX(t)+2KγX(t)5 1
2

KX(t)+
1
2

KX(t)=KX(t) for t=T0.

(ii) F(X ) is relatively compact. The set F(X ) is locally uniformly
bounded on [g(T0),∞), since it is a subset of X . The inequality 0 5
(Fx)′(t) 5 Kγ

∞∫
t

q(s)X(g(s))γ ds, t = T0, holding for all x(t) ∈ X guaran-

tees that F(X ) is locally equicontinuous on [T0,∞) and hence on [g(T0),∞).
The desired relative compactness then follows from Arzela–Ascoli’s lemma.

(iii) F is continuous. Let {xn(t)} be a sequence in X converging as
n → ∞ to x(t) ∈ X uniformly on every compact subinterval of [g(T0),∞).
Naturally, we need only to study the convergence on [T0,∞). Our aim is to
prove that Fxn(t) → Fx(t) as n → ∞ uniformly on compact subintervals
of [T0,∞). But this follows immediately from the Lebesgue dominated
convergence theorem applied to the inner integral of the right-hand side of
the inequality

∣∣Fxn(t)−Fx(t)
∣∣ 5

t∫

T0

∞∫

s

q(r)
∣∣xn(g(r))γ − x(g(r))γ

∣∣ dr ds, t = T0.

Therefore, all the hypotheses of the Schauder–Tychonoff fixed point the-
orem are fulfilled and so there exists x(t) ∈ X such that x(t) = Fx(t) for
t = g(T0), which implies in particular that

x(t) = x0 +

t∫

T0

∞∫

s

q(r)x(g(r))γ dr ds, t = T0.

This implies that x(t) is a solution of (A) on [T0,∞). Since x(t) ∈ X , i.e.,
x(t) ³ X(t), t →∞, x(t) is an intermediate solution of (A). This completes
the simultaneous proof of Theorems 3.4, 3.5 and 3.6. ¤

3.3. Regularity of Intermediate Solutions. It is shown that the two
kinds of intermediate solutions of (A) obtained in Theorems 3.4 and 3.6 are
actually regularly varying of indices 0 and 1, respectively. Combining this
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fact with Theorems 3.1 and 3.3 on the asymptotic relation (C), one can
characterize completely the situation in which the sublinear equation (A)
with regularly varying q(t) possesses nontrivial regularly varying solutions
of indices 0 and 1.

Theorem 3.7. Let q(t) ∈ RV(σ) and suppose that g(t) satisfies (1.1).
Equation (A) possesses nontrivial slowly varying solutions if and only if
σ = −2 and (3.4) holds, in which case the asymptotic behavior of any such
solution x(t) is governed by the unique formula (3.5).

Proof. (The “if” part) Suppose that σ = −2 and (3.4) holds. Then q(t) =

t−2l(t) and (3.4) is expressed as
∞∫
a

s−1l(s) ds = ∞. Let x(t) be an interme-

diate solution of (A) constructed in Theorem 3.4 as a solution of the integral
equation (B). It is known that

x(t) ³ X1(t) =
[
(1− γ)

t∫

a

s−1l(s) ds

] 1
1−γ

, t →∞. (3.32)

Using (B), (3.32) and one of the properties of X1(t) mentioned in the proof
of the “if” part of Theorem 3.1, we find that

x′(t) =

∞∫

t

q(s)x(g(s))γ ds ³
∞∫

t

q(s)X1(g(s))γ ds ∼

∼
∞∫

t

q(s)X1(s)γ ds ∼ t−1l(t)

[
(1− γ)

t∫

a

s−1l(s) ds

] γ
1−γ

, t →∞. (3.33)

We combine (3.32) and (3.33) to obtain

t
x′(t)
x(t)

³ l(t)

(1− γ)
t∫

a

s−1l(s) ds

, t →∞,

from which, noting that the right-hand side of the above tends to 0 as t →∞
by (iii) of Proposition 2.5, we conclude that lim

t→∞
tx′(t)/x(t) = 0. From

Proposition 2.4 it follows that x(t) is a nontrivial slowly varying function.
(The “only if” part) If x(t) is a nontrivial slowly varying solution of (A),

then it clearly satisfies relation (C) and hence from the “only if” part of
Theorem 3.1 it follows that σ = −2 and (3.4) holds and, moreover, that the
asymptotic behavior of x(t) is given by (3.5). This completes the proof of
Theorem 3.7. ¤

Theorem 3.8. Let q(t) ∈ RV(σ) and suppose that g(t) satisfies (1.1).
Equation (A) possesses nontrivial regularly varying solutions of index 1 if
and only if σ = −γ−1 and (3.8) holds, in which case the asymptotic behavior
of any such solution x(t) is governed by the unique formula (3.9).
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Proof. (The “if” part) Suppose that σ = −γ − 1 and (3.8) holds. Then,

q(t) = t−γ−1l(t) and (3.8) is expressed as
∞∫
a

s−1l(s) ds < ∞. Let x(t) be an

intermediate solution of (A) obtained in Theorem 3.4 as a solution of the
integral equation (B). It satisfies

x(t) ³ X3(t) = t

[
(1− γ)

∞∫

t

s−1l(s) ds

] 1
1−γ

, t →∞,

which implies that

− x′′(t) = q(t)x(g(t))γ ³ q(t)X3(g(t))γ ∼

∼ q(t)X3(t)γ = t−γ−1l(t)
[
(1− γ)

∞∫

t

s−1l(s) ds

] γ
1−γ

, t →∞. (3.34)

On the other hand, taking the proof of the “if” part of Theorem 3.3, we see
that x′(t) satisfies

x′(t) =

∞∫

t

q(s)x(g(s))γ ds ³
∞∫

t

q(s)X3(g(s))γ ds ∼

∼
∞∫

t

q(s)X3(s)γ ds =
[
(1− γ)

∞∫

t

s−1l(s) ds

] 1
1−γ

, t →∞. (3.35)

Using (3.34) and (3.35), we obtain

−t
x′′(t)
x′(t)

³ l(t)

(1− γ)
∞∫
t

s−1l(s) ds

→ 0, t →∞,

where (iii) of Proposition 2.5 has been used. This means by Proposition 2.4
that x′(t) is slowly varying, and from (i) of Proposition 2.5 we conclude that

x(t) ∼
t∫

T0

x′(s) ds ∼ tx′(t) ∈ RV(1), t →∞,

which implies that x(t) is a nontrivial regularly varying solution of index 1.
(The “only if” part) Let x(t) be a nontrivial RV(1)-solution of (A). Then,

since it satisfies relation (C), from the “only if” part of Theorem 3.3 it
follows that σ = −γ − 1 and (3.8) holds and, moreover, that the asympto-
tic behavior of x(t) is given by (3.9). This completes the proof of Theo-
rem 3.8. ¤

Remark 3.1. It is impossible for us to prove that the solution obtained
in Theorem 3.5 is regularly varying of index ρ ∈ (0, 1). A more powerful
criterion than Proposition 2.4 seems to be necessary.
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Example 3.1. Consider equation (A) with g(t) satisfying (1.1). Suppose
that q(t) satisfies

q(t) ∼ c

t2 log t(log log t)γ
, t →∞,

for some positive constant c > 0. It is clear that q(t) ∈ RV(−2) and (3.4)
is satisfied, and that

[
(1− γ)

t∫

a

sq(s) ds

] 1
1−γ

∼ c
1

1−γ log log t, t →∞.

By Theorem 3.7, we see that equation (A) possesses nontrivial SV-solutions
x(t), all of which have one and the same asymptotic behavior x(t) ∼
c

1
1−γ log log t, t →∞, for any retarded argument g(t). If, in particular,

q(t) =
1

t2 log t(log log g(t))γ

(
1 +

1
log t

)
,

then equation (A) has an exact solution x0(t) = log log t ∈ ntr− SV.

Example 3.2. Consider equation (A) with g(t) satisfying (1.1). Suppose
that q(t) satisfies

q(t) ∼ c

tγ+1 log t(log log t)2−γ
∈ RV(−γ − 1), t →∞,

for some constant c > 0. As is easily checked, (3.8) is satisfied and
[
(1− γ)

∞∫

t

sγq(s) ds

] 1
1−γ

∼ c
1

1−γ

log log t
, t →∞,

and hence by Theorem 3.8, equation (A) possesses nontrivial RV(1)-solutions

x(t), all of which have one and the same asymptotic behavior x(t) ∼ c
1

1−γ t
log log t ,

t →∞, for any retarded argument g(t). If, in particular,

q(t) =
(log log g(t))γ

tg(t)γ log t(log log t)2
(
1− 1

log t
− 2

log t· log log t

)
,

then equation (A) has an exact solution x1(t) = t/ log log t.

Example 3.3. Consider the equation

x′′(t) + t−
3
2
(
2 + sin(log log t)

)2
x(g(t))

1
3 = 0, (3.36)

which is a special case of (A) in which

γ =
1
3

and q(t) = t−
3
2

(
2 + sin(log log t)

)2

∈ RV
(
− 3

2

)
.

Since σ = − 3
2 satisfies −2 < σ < −γ−1 = − 4

3 , Theorem 3.5 is applicable to
(3.35) and ensures the existence of its intermediate solution x(t) such that

x(t) ³
(16

3

) 3
2
t

3
4
(
2 + sin(log log t)

)3
, t →∞.
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It is impossible to decide whether or not this solution is regularly varying
of index 3

4 .

Remark 3.2. A question naturally arises: what will happen if condition
(1.1) on g(t) is not required? The problem of investigating the accurate
asymptotic behavior of positive solutions of (A) for general retarded argu-
ment is much more difficult to handle as the following example indicates. It
is to be noted that very little is known about regularly varying solutions of
functional differential equations, linear or nonlinear, with general deviating
arguments. See e.g. the papers [3]–[5].

Example 3.4. Consider the equation

x′′(t) + q(t)x(log t)γ = 0, 0 < γ < 1, (3.37)

where q(t) is given by

q(t) =
(log log log t)γ

t(log t)γ+1(log log t)2
(
1− 1

log t
− 2

log t· log log t

)
∈ RV(−1).

As is easily checked, equation (3.37) has a nontrivial RV(1)-solution x(t) =
t/ log log t in marked contrast to Theorem 3.6 or Theorem 3.8.
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Short Communications

Malkhaz Ashordia

ON A TWO-POINT SINGULAR
BOUNDARY VALUE PROBLEM FOR SYSTEMS

OF NONLINEAR GENERALIZED
ORDINARY DIFFERENTIAL EQUATIONS

Abstract. The two-point boundary value problem is considered for the
system of nonlinear generalized ordinary differential equations with singu-
larities on a non-closed interval. Singularity is understood in a sense of
the vector-function corresponding to the system which belongs to the local
Carathéodory class with respect to the matrix-function corresponding to
the system.

The general sufficient conditions are established for the unique solvabil-
ity of this problem. Relying on these results, the effective conditions are
established for the unique solvability of the problem.

îâäæñéâ. ïæêàñèŽîëĲâĲæŽê àŽêäëàŽáëâĲñè øãâñèâĲîæã áæòâîâê-
ùæŽèñî àŽêðëèâĲŽåŽ ïæïðâéæïŽåãæï àŽêýæèñèæŽ ëîûâðæèëãŽêæ
ïŽïŽäôãîë ŽéëùŽêŽ ŽîŽøŽçâðæè æêðâîãŽèäâ. ïæêàñèŽîëĲŽ àŽæàâĲŽ
æé Žäîæå, îëé ïæïðâéæï öâïŽĲŽéæïæ ãâóðëîñèæ òñêóùæŽ éæâçñåãêâĲŽ
èëçŽèñî çŽîŽåâëáëîæï çèŽïï ïæïðâéæï öâïŽĲŽéæïæ éŽðîæùñèæ òñê-
óùææï éæéŽîå.

éæôâĲñèæŽ Žé ŽéëùŽêæï ùŽèéýîæãŽá ŽéëýïêŽáëĲæï äëàŽáæ ïŽçéŽîæïæ
ìæîëĲâĲæ. Žé öâáâàâĲäâ áŽõîáêëĲæå áŽáàâêæèæŽ ùŽèïŽýŽá ŽéëýïêŽ-
áëĲæï âòâóðñîæ ïŽçéŽîæïæ ìæîëĲâĲæ.

2010 Mathematics Subject Classification. 34K06, 34K10.
Key words and phrases. Systems of nonlinear generalized ordinary
differential equations, singularity, the Kurzweil–Stieltjes integral, two-point
boundary value problem.

1. Statement of the Problem and Basic Notation

In the present paper, for a system of linear generalized ordinary differ-
ential equations with singularities

dxi = fi(t, x1, . . . , xn)dai(t) for t ∈ [a, b] (i = 1, . . . , n) (1.1)

we consider the two-point boundary value problem

xi(a+) = 0 (i = 1, . . . , n0), xi(b−) = 0 (i = n0 + 1, . . . , n), (1.2)
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where −∞ < a < b < +∞, n0 ∈ {1, . . . , n}, x1, . . . , xn are the components
of a desired solution x, ai : [a, b] → R (i = 1, . . . , n) are nondecreasing
functions, and fi : ]a, b[×Rn → R is a function belonging to the local Cara-
théodory class Carloc(]a, b[×Rn,R; ai) corresponding to the function ai for
every i ∈ {1, . . . , n}.

We investigate the question of solvability of the problem (1.1), (1.2), when
the system (1.1) has singularities. Singularity is understood in a sense that
the components of the vector-function f may have non-integrable compo-
nents at the boundary points a and b, in general. We present a general
theorem for the solvability of this problem. On the basis of this theorem we
obtain the effective criteria for the solvability of the problem.

Analogous and related questions are investigated in [13]–[18] (see also re-
ferences therein) for the singular two-point and multipoint boundary value
problems for linear and nonlinear systems of ordinary differential equations,
and in [1]–[7] (see also references therein) for regular two-point and multi-
point boundary value problems for systems of linear and nonlinear gener-
alized differential equations. As for the two-point and multipoint singular
boundary value problems for generalized differential systems, they are little
studied and, despite some results given in [8–10] for two-point and mul-
tipoint singular boundary value problem, their theory is rather far from
completion even in the linear case. Therefore, the problem under consider-
ation is actual.

To a considerable extent, the interest in the theory of generalized ordi-
nary differential equations has been motivated by the fact that this theory
enables one to investigate ordinary differential, impulsive and difference
equations from a unified point of view (see e.g. [1]–[12], [19]–[22] and refer-
ences therein).

Throughout the paper, the use will be made of the following notation
and definitions.
R = ] −∞, +∞[ ; R+ = [0,+∞[ ; [a, b], ]a, b[ and ]a, b], [a, b[ are, respec-

tively, closed, open and half-open intervals.
Rn×m is the space of all real n×m-matrices X = (xil)

n,m
i,l=1 with the norm

‖X‖ =
n,m∑

i,l=1

|xil|.

Rn×n
+ =

{
(xil)

n,m
i,l=1 : xil ≥ 0 (i = 1, . . . , n; l = 1, . . . , m)

}
.

On×m (or O) is the zero n×m matrix.
If X = (xil)

n,m
i,l=1 ∈ Rn×m, then |X| = (|xil|)n,m

i,l=1.
Rn = Rn×1 is the space of all real column n-vectors x = (xi)n

i=1; Rn
+ =

Rn×1
+ .
If X ∈ Rn×n, then X−1, det X and r(X) are, respectively, the matrix

inverse to X, the determinant of X and the spectral radius of X; In is the
identity n× n-matrix.
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d∨
c

(X), where a < c < d < b, is the variation of the matrix-function

X : ]a, b[→ Rn×m on the closed interval [c, d], i.e., the sum of total vari-
ations of the latter components xil (i = 1, . . . , n; l = 1, . . . , m) on this

interval; if d < c, then
d∨
c

(X) = −
c∨
d

(X); V (X)(t) = (v(xil)(t))
n,m
i,l=1, where

v(xil)(c0)= 0, v(xil)(t) =
t∨
c0

(xil) for a < t < b, and c0 = (a + b)/2.

X(t−) and X(t+) are the left and the right limits of the matrix-function
X : ]a, b[→ Rn×m at the point t ∈ ]a, b[ (we assume X(t) = X(a+) for t ≤ a
and X(t) = X(b−) for t ≥ b, if necessary).

d1X(t) = X(t)−X(t−), d2X(t) = X(t+)−X(t).
BV([a, b],Rn×m) is the set of all matrix-functions of bounded variation

X : [a, b] → Rn×m (i.e., such that
b∨
a

(X) < +∞).

BVloc(]a, b[ ,Rn×m) is the set of all matrix-functions X : ]a, b[→ Rn×m

such that
d∨
c

(X) < +∞ for every a < c < d < b.

If X ∈ BVloc(]a, b[ ,Rn×n), det(In + (−1)jdjX(t)) 6= 0 for t ∈ ]a, b[ (j =
1, 2), and Y ∈ BVloc(]a, b[ ,Rn×m), then A(X, Y )(t) ≡ B(X, Y )(c0, t), where
B is the operator defined as follows:

B(X,Y )(t, t) = On×m for t ∈ ]a, b[ ,

B(X, Y )(s, t) = Y (t)− Y (s) +
∑

s<τ≤t

d1X(τ) · (In − d1X(τ)
)−1

d1Y (τ)−

−
∑

s≤τ<t

d2X(τ) · (In+d2X(τ)
)−1

d2Y (τ) for a<s<t<b

and

B(X, Y )(s, t) = −B(X, Y )(t, s) for a < t < s < b.

A matrix-function is said to be continuous, nondecreasing, integrable,
etc., if each of its components is such.

If α : [a, b] → R is a nondecreasing function, then Dα = {t ∈ [a, b] :
d1α(t) + d2α(t) 6= 0}.

If α ∈ BV([a, b],R) has no more than a finite number of points of discon-
tinuity, and m ∈ {1, 2}, then Dαm = {tαm1, . . . , tαmnαm} (tαm1 < · · · <
tαmnαm) is the set of all points from [a, b] for which dmα(t) 6= 0, and
µαm = max{dmα(t) : t ∈ Dαm} (m = 1, 2).

If β ∈ BV([a, b],R), then

ναmβj = max
{

djβ(tαml) +
∑

tαm l+1−m<τ<tαm l+2−m

djβ(τ) : l = 1, . . . , nαm

}

(j, m = 1, 2); here tα20 = a− 1, tα1nα1+1 = b + 1.
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s1, s2, sc : BV([a, b],R) → BV([a, b],R) (j = 0, 1, 2) are the operators
defined, respectively, by

s1(x)(a) = s2(x)(a) = 0,

s1(x)(t) =
∑

a<τ≤t

d1x(τ) and s2(x)(t) =
∑

a≤τ<t

d2x(τ) for a < t ≤ b,

and
sc(x)(t) = x(t)− s1(x)(t)− s2(x)(t) for t ∈ [a, b].

If g : [a, b] → R is a nondecreasing function, x : [a, b] → R and a ≤ s <
t ≤ b, then

t∫

s

x(τ) dg(τ) =
∫

]s,t[

x(τ) ds0(g)(τ) +
∑

s<τ≤t

x(τ)d1g(τ) +
∑

s≤τ<t

x(τ)d2g(τ),

where
∫

]s,t[

x(τ) ds0(g)(τ) is the Lebesgue–Stieltjes integral over the open

interval ]s, t[ with respect to the measure µ0(s0(g)) corresponding to the

function s0(g); if a = b, then we assume
b∫

a

x(t) dg(t) = 0; thus,
t∫
s

x(τ) dg(τ)

is the Kurzweil–Stieltjes integral (see [19], [20], [22]). Moreover, we put
t∫

s+

x(τ) dg(τ) = lim
ε→0, ε>0

t∫

s+ε

x(τ) dg(τ)

and
t−∫

s

x(τ) dg(τ) = lim
ε→0, ε>0

t−ε∫

s

x(τ) dg(τ).

Lp([a, b],R; g) (1 ≤ p < +∞) is the space of all functions x : [a, b] → R
measurable and integrable with respect to the measure µ(gc(g)) for which

∑

a<τ≤b

|x(t)|µd1g(τ) +
∑

a≤τ<b

|x(t)|µd2g(t) < +∞,

with the norm

‖x‖p,g =
( b∫

a

|x(t)|p dg(t)
) 1

p

.

L+∞([a, b],R; g) is the space of all µ(s0(g))-measurable and µ(s0(g))-
essentially bounded functions x : [a, b] → R such that sup{|x(t)| : t ∈
Dα} < +∞, with the norm

‖x‖+∞,g = inf
{

r > 0 : |x(t)| ≤ r

for µ(s0(g))-almost all t ∈ [a, b] and for t ∈ Dα

}
.
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If g(t) ≡ g1(t)− g2(t), where g1 and g2 are nondecreasing functions, then
t∫

s

x(τ) dg(τ) =

t∫

s

x(τ) dg1(τ)−
t∫

s

x(τ) dg2(τ) for s ≤ t.

If G = (gik)l,n
i,k=1 : [a, b] → Rl×n is a nondecreasing matrix-function

and D ⊂ Rn×m, then L([a, b], D; G) is the set of all matrix-functions X =
(xkj)

n,m
k,j=1 : [a, b] → D such that xkj ∈ L([a, b], R; gik) (i = 1, . . . , l; k =

1, . . . , n; j = 1, . . . ,m);
t∫

s

dG(τ) ·X(τ) =
( n∑

k=1

t∫

s

xkj(τ) dgik(τ)
)l,m

i,j=1

for a ≤ s ≤ t ≤ b,

Sj(G)(t) ≡ (
sj(gik)(t)

)l,n

i,k=1
(j = 0, 1, 2).

The inequalities between the vectors and between the matrices are un-
derstood componentwise.

If D1 ⊂ Rn and D2 ⊂ R, then Car([a, b]×D1, D2; g) is the Carathéodory
class, i.e., the set of all mappings f : [a, b]×D1 → D2 such that:

(i) the function f(· , x) : [a, b] → D2 is µ(g)-measurable for every x ∈
D1;

(ii) the function f(t, ·) : D1 → D2 is continuous for µ(g)-almost all
t ∈ [a, b], and

sup
{|f(· , x)| : x ∈ D0

} ∈ L([a, b], R; g)

for every compact D0 ⊂ D1.
Carloc(]a, b[×D1, D2; g) is the set of all mappings f : ]a, b[×D1 → D2

the restriction of which on every closed interval [c, d] of ]a, b[ belongs to
Car([c, d] × D1, D2; g). Analogously are defined the sets Carloc(]a, b] ×
D1, D2; G) and Carloc([a, b[×D1, D2;G).

We assume that ai : [a, b] → R (i = 1, . . . , n) are nondecreasing func-
tions and fi ∈ Car(]a, b[×Rn,Rn; ai) (i = 1, . . . , n). A vector-function
x = (xi)n

i=1 is said to be a solution of the system (1.1) if xi ∈ BVloc(]a, b],R)
(i = 1, . . . , n0), xi ∈ BVloc([a, b[ ,R) (i = n0 + 1, . . . , n) and

xi(t) = xi(s) +
n∑

l=1

t∫

s

fl(τ, x1(τ), . . . , xn(τ)) dail(τ)

for a<s≤ t≤b if i∈{1, . . . , n0} and for a≤s<t<b if i∈{n0+1, . . . , n}.
Under the solution of the problem (1.1), (1.2) we mean a solution x(t) =

(xi(t))n
i=1 of the system (1.1) such that the one-sided limits xi(a+) (i =

1, . . . , n0) and xi(b−) (i = n0 + 1, . . . , n) exist and the equalities (1.2) are
fulfilled. We assume xi(a) = 0 (i = 1, . . . , n0) and xi(b) = 0 (i = n0 +
1, . . . , n), if necessary.
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A vector-function x = (xi)n
i=1, x ∈ BV(]a, b[ ,R), is said to be a solution

of the system of generalized differential inequalities

dxi(t) ≤
n∑

l=1

xl(t) dbil(t) (≥) for t ∈ ]a, b[ (i = 1, . . . , n),

where bil : [a, b] → R (i, l = 1, . . . , n) are nondecreasing functions, if

xi(t)− xi(s) ≤
n∑

l=1

t∫

s

xl(τ) dbil(τ) (≥) for a < s ≤ t < b (i = 1, . . . , n).

Without loss of generality, we assume that ai(a) = On×n (i = 1, . . . , n).
Moreover, we assume

det
(
In + (−1)jdjai(t)

) 6= 0 for t ∈ ]a, b[ (j = 1, 2; i = 1, . . . , n). (1.3)

The above inequalities guarantee the unique solvability of the Cauchy
problem for the corresponding system (see [22, Theorem III.1.4]).

If s ∈ ]a, b[ and α ∈ BVloc(]a, b[ ,R) are such that

1 + (−1)jdjβ(t) 6= 0 for (−1)j(t− s) < 0 (j = 1, 2),

then by γβ(· , s) we denote the unique solution of the Cauchy problem

dγ(t) = γ(t)dβ(t), γ(s) = 1.

It is known (see [11], [12]) that

γα(t, s) =





exp
(
s0(β)(t)− s0(β)(s)

)×
×

∏

s<τ≤t

(1−d1α(τ))−1
∏

s≤τ<t

(1+d2β(τ)) for t > s,

exp
(
s0(β(t)− s0(β(s)

)×
×

∏

t<τ≤s

(1−d1β(τ))
∏

t≤τ<s

(1+d2β(τ))−1 for t < s,

1 for t = s.

(1.4)

It is evident that if the last inequalities are fulfilled on the whole interval
[a, b], then γ−1

α (t) exists for every t ∈ [a, b].

Definition 1.1. Let ai : [a, b] → R (i = 1, . . . , n) be nondecreasing func-
tions and n0 ∈ {1, . . . , n}. We say that the matrix-function C = (cil)n

i,l=1 ∈
BV([a, b],Rn×n

+ ) belongs to the set U(a+, b−; a1, . . . , an; n0), if the system

sgn
(
n0 +

1
2
− i

)
dxi(t) ≤

≤
n∑

l=1

cil(t)xl(t) dai(t) for t ∈ [a, b] (i = 1, . . . , n) (1.5)

has no nontrivial nonnegative solution satisfying the condition (1.2).
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Definition 1.2. We say that a vector-function g : [a, b] × Rn → Rn,
g(t, x) = (gi(t, x1, . . . , xn))n

i=1, is nondecreasing outside of the diagonal
elements (or quasi-nondecreasing) with respect to nondecreasing vector-
function α = (αi)n

i=1 if from the condition

x1 ≤ y1, . . . , xi−1 ≤ yi−1, xi+1 ≤ yi+1, . . . , xn ≤ yn

follows

gi(t, x1, . . . , xi−1, xi, . . . , xn) ≤ gi(t, y1, . . . , yi−1, xi, yi+1, . . . , yn)

for µ(ai)-almost all t (i = 1, . . . , n).

Definition 1.3. Let ai : [a, b] → R (i = 1, . . . , n) be nondecreasing
functions and n0 ∈ {1, . . . , n}. We say that a vector-function g(t, x) =
(gi(t, x1, . . . , xn))n

i=1, gi ∈ Car([a, b] × Rn,R; ai) (i = 1, . . . , n), belongs to
the set U0(a+, b−; a1, . . . , an; n0) if it is nonnegative, quasi-nondecreasing
and there exists a positive number r ∈ R+ such that

0 ≤ x(t) ≤ r for t ∈ [a, b]

for every nonnegative solution x = (xi)n
i=1 of the system

sgn
(
n0 +

1
2
− i

)
dxi(t) ≤

≤ gi(t, x1, . . . , xn(t))dai(t) for t ∈ [a, b] (i = 1, . . . , n) (1.6)

under the boundary condition (1.2).

The similar definition of the sets U0 and U has been introduced by I. Ki-
guradze for ordinary differential equations (see [13]–[15]).

Theorem 1.1. Let the functions fi ∈ Carloc(]a, b[×Rn,Rn; ai) (i =
1, . . . , n) be such that

fi(t, x1, . . . , xn) sgn
((

n0 +
1
2
− i

)
xi

)
≤ −bi(t)|xi|+ gi(t, |x1|, . . . , |xn|)

for µ(sc(ai))-almost all t ∈ [a, b] and for every t ∈ Dai ,

(xk)n
k=1 ∈ Rn (i = 1, . . . , n),

fi(t, x1, . . . , xn)d2ai(t) sgn
(
xi + fi(t, x1, . . . , xn)d2ai(t)

) ≤
≤ −bi(t)|xi|+ gi

(
t, |x1|, . . . , |xn|

)

for t ∈ [a, b] and (xk)n
k=1 ∈ Rn (i = 1, . . . , n0)

and

fi(t, x1, . . . , xn)d1ai(t) sgn
(
xi − fi(t, x1, . . . , xn)d1ai(t)

) ≥
≥ bi(t)|xi| − gi(t, |x1|, . . . , |xn|)

for t ∈ [a, b] and (xk)n
k=1 ∈ Rn (i = n0 + 1, . . . , n),
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where gi ∈ Car([a, b] × Rn,R+; ai) (i = 1, . . . , n), the functions bi ∈
Lloc(]a, b],R; ai) for (i = 1, . . . , n0) and bi ∈ Lloc([a, b[ ,R; ai) for (i =
n0 + 1, . . . , n) are nonnegative. Let, moreover,

g = (gi)n
i=1 ∈ U0(a+, b−; a1, . . . , an; n0),

lim
t→a+

bi(t)d2ai(t) < 1 (i = 1, . . . , n0),

lim
t→b−

bi(t)d1ai(t) < 1 (i = n0 + 1, . . . , n)
(1.7)

and
lim

t→a+
lim

k→∞
sup γαi

(t, a + 1/k) = 0 (i = 1, . . . , n0),

lim
t→b−

lim
k→∞

sup γαi
(t, b− 1/k) = 0 (i = n0 + 1, . . . , n),

(1.8)

where αi(t) ≡
t∫

c0

bi(τ) dai(τ) (i = 1, . . . , n), c0 = (a + b)/2, and γαi (i =

1, . . . , n) are the functions defined according to (1.4). Then the problem
(1.1), (1.2) is solvable.

Theorem 1.2. Let the functions fi ∈ Carloc(]a, b[×Rn,Rn; ai) (i =
1, . . . , n) be such that

fi(t, x1, . . . , xn) sgn
((

n0 +
1
2
− i

)
xi

)
≤

≤ −bi(t)|xi|+
n∑

l=1

ηil(t)|xl|+ qi

(
t,

n∑

l=1

|xl|
)

for µ(sc(ai))-almost all t ∈ [a, b] and for every t ∈ Dai ,

(xk)n
k=1 ∈ Rn (i = 1, . . . , n), (1.9)

fi(t, x1, . . . , xn)d2ai(t) sgn
(
xi + fi(t, x1, . . . , xn)d2ai(t)

) ≤

≤−bi(t)|xi|+
n∑

l=1

ηil(t)|xl|+qi

(
t,

n∑

l=1

|xl|
)

for t∈ [a, b] (i=1, . . . , n0) (1.10)

and

fi(t, x1, . . . , xn)d1ai(t) sgn
(
xi − fi(t, x1, . . . , xn)d1ai(t)

) ≥

≥bi(t)|xi|−
n∑

l=1

ηil(t)|xl|−qi

(
t,

n∑

l=1

|xl|
)

for t∈[a, b] (i=n0+1, . . . , n) (1.11)

where ηil∈L([a, b],R; ai) (i, l=1, . . . , n), the functions bi∈Lloc(]a, b],R; ai)
(i = 1, . . . , n0) and bi ∈ Lloc([a, b[,R; ai) (i = n0+1, . . . , n) are nonnegative,
and qi ∈ Car([a, b]× R+,R+; ai) (i = 1, . . . , n) are nondecreasing functions
in the second variable. Let, moreover, the conditions (1.7), (1.8),

C = (cil)n
i,l=1 ∈ U(a+, b−; a1, . . . , an; n0),



119

and

lim
ρ→+∞

1
ρ

b∫

a

qi(t, ρ) dai(t) = 0 (i = 1, . . . , n) (1.12)

be valid, where αi(t) ≡
t∫

c0

bi(τ) dai(τ) (i = 1, . . . , n), c0 = (a + b)/2, cil(t) ≡
t∫

a

ηil(τ) dai(τ) (i, l = 1, . . . , n), and γαi
(i = 1, . . . , n) are the functions

defined according to (1.4). Then the problem (1.1), (1.2) is solvable.

Corollary 1.1. Let the functions fi ∈ Carloc(]a, b[×Rn,Rn; ai) (i =
1, . . . , n) be such that the conditions (1.9)–(1.12) hold, where the functions
ai (i = 1, . . . , n) have not more than a finite number of points of dis-
continuity, the functions bi ∈ Lloc(]a, b],R; ai) (i = 1, . . . , n0) and bi ∈
Lloc([a, b[ ,R; ai) (i = n0 + 1, . . . , n) are nonnegative, qi ∈ Car([a, b] ×
R+,R+; ai) (i = 1, . . . , n) are nondecreasing functions in the second vari-

able, αi(t) ≡
t∫

c0

bi(τ) dai(τ) (i = 1, . . . , n), c0 = (a + b)/2, γαi (i = 1, . . . , n)

are the functions defined according to (1.4),

t∫

a

ηil(τ) dai(τ) ≡
t∫

c

hil(τ)dβl(τ) (i, l = 1, . . . , n),

βl (l=1, . . . , n) are the functions nondecreasing on [a, b], hii∈Lµ([a, b],R;βi),
hil ∈ Lµ([a, b],R+;βl) (i 6= l; i, l = 1, . . . , n), 1 ≤ µ ≤ +∞. Let, moreover,

r(H) < 1, (1.13)

where the 3n× 3n-matrix H = (Hj+1 m+1)2j,m=0 is defined by

Hj+1 m+1 =
(
λkmij‖hik‖µ,sm(βi)

)n

i,k=1
(j, m = 0, 1, 2),

ξij =
(
sj(βi)(b)− sj(βi)(a)

) 1
ν (j = 0, 1, 2, ; i = 1, . . . , n);

λk0i0 =





( 4
π2

) 1
ν

ξ2
k0 if s0(βi)(t) ≡ s0(βk)(t),

ξk0ξi0 if s0(βi)(t) 6≡ s0(βk)(t) (i, k = 1, . . . , n);

λkmij =ξkmξij if m2+j2 >0, mj =0 (j, m=0, 1, 2; i, k=1, . . . , n),

λkmij =
(1

4
µαkmναkmαij sin−2 π

4nαkm+2

) 1
ν

(j, m=1, 2; i, k=1, . . . , n),

and 1
µ + 2

ν = 1. Then the problem (1.1), (1.2) is solvable.
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Remark 1.1. The 3n × 3n-matrix H, appearing in Corollary 1.1 can be
replaced by the n× n-matrix

(
max

{ 2∑

j=0

λkmij‖hik‖µ,Sm(αk) : m = 0, 1, 2
})n

i,k=1

.

Remark 1.2. If ai(t) ≡ a0(t) (i = 1, . . . , n), where the function a0 has not
more than a finite number of points of discontinuity, then we can assume
that hil(t) ≡ ηil(t) and βl(t) ≡ a0(t) (i, l = 1, . . . , n).

By Remark 1.1, Corollary 1.1 has the following form for ai(t) ≡ a0(t),
bi(t) ≡ b0(t), ηil(t) ≡ ηil = const, qi(t, x) ≡ q(t, x) (i, l = 1, . . . , n) and
µ = +∞ since, by the choice of hil(t) ≡ ηil(t) = ηil (i, l = 1, . . . , n), we
have βl(t) ≡ a0(t) (l = 1, . . . , n) in this case.

Corollary 1.2. Let the functions fi ∈ Carloc(]a, b[×Rn,Rn; a0) be such
that the conditions (1.12),

fi(t, x1, . . . , xn) sgn
((

n0 +
1
2
− i

)
xi

)
≤

≤ −b0(t)|xi|+
n∑

l=1

ηil|xl|+ qi

(
t,

n∑

l=1

|xl|
)

for µ(sc(a0))-almost all t ∈ [a, b] and for every t ∈ Da,

(xk)n
k=1 ∈ Rn (i = 1, . . . , n),

fi(t, x1, . . . , xn)d2ai(t) sgn
(
xi + fi(t, x1, . . . , xn)d2ai(t)

) ≤

≤ −b0(t)|xi|+
n∑

l=1

ηil|xl|+ qi

(
t,

n∑

l=1

|xl|
)

for t ∈ [a, b] (i = 1, . . . , n0),

fi(t, x1, . . . , xn)d1ai(t) sgn
(
xi − fi(t, x1, . . . , xn)d1ai(t)

) ≥

≥ b0(t)|xi| −
n∑

l=1

ηil|xl| − qi

(
t,

n∑

l=1

|xl|
)

for t ∈ [a, b] (i = n0 + 1, . . . , n)

and

lim
ρ→+∞

1
ρ

b∫

a

q(t, ρ) da0(t) = 0

hold, where a0 is a nondecreasing function on [a, b] having no more than a fi-
nite number of points of discontinuity, b0 ∈ L([a, b],R+; a0), q ∈ Car([a, b]×
R+,R+; a0) is a nondecreasing function in the second variable, the function

α(t) ≡
t∫

c0

b(τ) da(τ), c0 = (a + b)/2, satisfies the conditions (1.7) and (1.8),

γα is the function defined according to (1.4), ηii ∈ R, ηil ∈ R+ (i 6= l;
i, l = 1, . . . , n). Let, moreover,

ρ0 r(H) < 1,
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where

H = (ηik)n
i,k=1, ρ0 = max

{ 2∑

j=0

λmj : m = 0, 1, 2
}

,

λ00 =
2
π

(
s0(a0)(b)− s0(a0)(a)

)
,

λ0j = λj0 =
(
s0(a0)(b)− s0(a0)(a)

) 1
2
(
sj(a0(b)− sj(a0(a)

) 1
2 (j = 1, 2),

λmj =
1
2

(
µαmναmαj

) 1
2 sin−1 π

4nαm + 2
(m, j = 1, 2).

Then the problem (1.1), (1.2) is solvable.

Theorem 1.3. Let the functions fi ∈ Carloc(]a, b[×Rn,Rn; ai) (i =
1, . . . , n) be such that the conditions (1.7)–(1.12),

d2βi(a) ≤ 0 and 0 ≤ d1βi(t) < |ηi|−1 for a < t ≤ b (i = 1, . . . , n0),

d1βi(b) ≤ 0 and 0 ≤ d2βi(t) < |ηi|−1 for a ≤ t < b (i = n0 + 1, . . . , n)

and
t∫

c

ηil(τ) da(τ) = hilβi(t) + βil(t) for t ∈ [q, b] (i, l = 1, . . . , n)

are fulfilled, where ηil ∈ L([a, b],R; ai) (i, l = 1, . . . , n), the functions bi ∈
Lloc(]a, b],R; ai) (i = 1, . . . , n0) and bi ∈ Lloc([a, b[,R; ai) (i = n0 +1, . . . , n)
are nonnegative, and qi ∈ Car([a, b] × R+,R+; ai) (i = 1, . . . , n) are non-

decreasing functions in the second variable, αi(t) ≡
t∫

c0

bi(τ) dai(τ) (i =

1, . . . , n), c0 = (a + b)/2, and γαi (i = 1, . . . , n) are the functions defined
according to (1.4), hii < 0, hil ≥ 0, ηi < 0 (i 6= l; i, l = 1, . . . , n), βii

(i = 1, . . . , n) are the functions nondecreasing on [a, b]; βil, βi ∈ BV([a, b],R)
(i 6= l; i, l = 1, . . . , n) are the functions nondecreasing on the interval ]a, b]
for i ∈ {1, . . . , n0} and on the interval [a, b[ for i ∈ {n0 + 1, . . . , n}. Let,
moreover, the condition (1.16) hold, where H = (ξil)n

i,l=1,

ξii = λi, ξil =
hil

|hii| (i 6= l; i, l = 1, . . . , n),

λi = V
(A(ζi, γi)

)
(b)− V

(A(ζi, γi)
)
(a+) for i ∈ {1, . . . , n0},

λi = V
(A(ζi, γi)

)
(b−)− V

(A(ζi, γi)
)
(a) for i ∈ {n0 + 1, . . . , n};

ζi(t) ≡
n∑

k=l

βil(t) (i = 1, . . . , n);

and

γi(t) ≡
(
βi(t)− βi(a+)

)
hii for a < t ≤ b (i = 1, . . . , n0),

γi(t) ≡
(
βi(b−)− βi(t)

)
hii for a ≤ t < b (i = n0 + 1, . . . , n).
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Then the problem (1.1), (1.2) is solvable.

Remark 1.3. If
λi < 1 (i = 1, . . . , n), (1.14)

then, in Theorem 1.2, we can assume that

ξii = 0, ξil =
hil

(1− λi)|hii| (i 6= l; i, l = 1, . . . , n). (1.15)
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Malkhaz Ashordia, Goderdzi Ekhvaia, and Nestan Kekelia

ON THE CONTI–OPIAL TYPE EXISTENCE AND
UNIQUENESS THEOREMS FOR GENERAL NONLINEAR

BOUNDARY VALUE PROBLEMS FOR SYSTEMS OF
IMPULSIVE EQUATIONS WITH FINITE AND

FIXED POINTS OF IMPULSES ACTIONS

Abstract. The general nonlocal boundary value problem is considered
for systems of impulsive equations with finite and fixed points of impulses
actions. Sufficient conditions are given for the solvability and unique solv-
ability of the problem.

îâäæñéâ. ïŽïîñè áŽ òæóïæîâĲñè æéìñèïæî ûâîðæèâĲæŽê àŽêðëèâ-
ĲŽåŽ ïæïðâéâĲæïåãæï àŽêýæèñèæŽ äëàŽáæ ïŽýæï ŽîŽûîòæãæ ïŽïŽäôã-
îë ŽéëùŽêŽ. éëõãŽêæèæŽ Žé ŽéëùŽêæï ŽéëýïêŽáëĲæïŽ áŽ ùŽèïŽýŽá Žéë-
ýïêŽáëĲæï ïŽçéŽîæïæ ìæîëĲâĲæ.

2000 Mathematics Subject Classification: 34B37.
Key words and phrases: Nonlocal boundary value problems, nonlin-
ear systems, impulsive equations, solvability, unique solvability, effective
conditions.

In the present paper, we consider the system of nonlinear impulsive equa-
tions with a finite number of impulses points

dx

dt
= f(t, x) almost everywhere on [a, b] \ {τ1, . . . , τm0}, (1)

x(τl+)− x(τl−) = Il(x(τl)) (l = 1, . . . , m0), (2)

with the general boundary value condition

h(x) = 0, (3)

where a < τ1 < · · · < τm0 ≤ b (we will assume τ0 = a and τm0+1 = b, if nec-
essary), −∞ < a < b < +∞, m0 is a natural number, f = (fi)n

i=1 belongs
to Carathéodory class Car([a, b] × Rn,Rn), Il = (Ili)n

i=1 : Rn → Rn (l =
1, . . . , m0) are continuous operators, and h : Cs([a, b],Rn; τ1, . . . , τm0) → Rn

is a continuous, nonlinear, in general, vector-functional.
In the paper, the sufficient (among them the effective sufficient) condi-

tions are given for solvability and unique solvability of the general nonlinear
impulsive boundary value problem (1), (2); (3). We have established the
Conti–Opial type theorems for the solvability and unique solvability of this
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problem. Analogous problems investigated in [8]– [11], [13] (see also the ref-
erences therein) deal with the general nonlinear boundary value problems
for ordinary differential and functional-differential systems.

Certain results obtained in the paper are more general than those already
known even for ordinary differential case.

Quite a number of issues of the theory of systems of differential equa-
tions with impulsive effect (both linear and nonlinear) have been studied
sufficiently well (for a survey of the results on impulsive systems see e.g. [1]–
[7], [12], [14] and the references therein). But the above-mentioned works,
as we know, do not contain the results obtained in the present paper.

Throughout the paper, the following notation and definitions will be used.
R = ]−∞,+∞[ , R+ = [0, +∞[ ; [a, b] (a, b ∈ R) is a closed segment.
Rn×m is the space of all real n × m-matrices X = (xij)

n,m
i,j=1 with the

norm

‖X‖ = max
j=1,...,m

n∑

i=1

|xij |;

|X| = (|xij |)n,m
i,j , [X]+ =

|X|+ X

2
;

Rn×m
+ =

{
(xij)

n,m
i,j=1 : xij ≥ 0 (i = 1, . . . , n; j = 1, . . . , m)

}
;

R(n×n)×m = Rn×n × · · · × Rn×n (m-times).

Rn = Rn×1 is the space of all real column n-vectors x = (xi)n
i=1; Rn

+ =
Rn×1

+ .
If X ∈ Rn×n, then X−1, det X and r(X) are, respectively, the matrix,

inverse to X, the determinant of X and the spectral radius of X; In×n is
the identity n× n-matrix.

b∨
a
(X) is the total variation of the matrix-function X : [a, b] → Rn×m,

i.e., the sum of total variations of the latter components;

V (X)(t) = (v(xij)(t))
n,m
i,j=1,

where v(xij)(a) = 0, v(xij)(t) =
t∨
a
(xij) for a < t ≤ b;

X(t−) and X(t+) are, respectively, the left and the right limit of the
matrix-function X : [a, b] → Rn×m at the point t (we will assume X(t) =
X(a) for t ≤ a and X(t) = X(b) for t ≥ b, if necessary);

‖X‖s = sup
{‖X(t)‖ : t ∈ [a, b]

}
.

BV([a, b], Rn×m) is the set of all matrix-functions of bounded variation

X : [a, b] → Rn×m (i.e., such that
b∨
a
(X) < +∞);

C([a, b], D), where D ⊂ Rn×m, is the set of all continuous matrix-functi-
ons X : [a, b] → D;

C([a, b], D; τ1, . . . , τm0) is the set of all matrix-functions X : [a, b] →
D, having the one-sided limits X(τl−) (l = 1, . . . , m0) and X(τl+) (l =
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1, . . . , m0), whose restrictions to an arbitrary closed interval [c, d] from [a, b]\
{τ1, . . . , τm0 l} belong to C([c, d], D);

Cs([a, b],Rn×m; τ1, . . . , τm0) is the Banach space of all X ∈
C([a, b],Rn×m; τ1, . . . , τm0) with the norm ‖X‖s.

C̃([a, b], D), where D ⊂ Rn×m, is the set of all absolutely continuous
matrix-functions X : [a, b] → D;

C̃([a, b], D; τ1, . . . , τm0) is the set of all matrix-functions X : [a, b] →
D, having the one-sided limits X(τl−) (l = 1, . . . , m0) and X(τl+) (l =
1, . . . , m0), whose restrictions to an arbitrary closed interval [c, d] from
[a, b] \ {τk}m

k=1 belong to C̃([c, d], D).
If B1 and B2 are the normed spaces, then the operator g : B1 → B2

(nonlinear, in general) is positive homogeneous if g(λx) = λg(x) for every
λ ∈ R+ and x ∈ B1.

The operator ϕ : C([a, b],Rn×m; τ1, . . . , τm0) → Rn is called nondecreas-
ing if for every x, y ∈ C([a, b],Rn×m; τ1, . . . , τm0) such that x(t) ≤ y(t) for
t ∈ [a, b] the inequality ϕ(x)(t) ≤ ϕ(y)(t) holds for t ∈ [a, b].

A matrix-function is said to be continuous, nondecreasing, integrable,
etc., if each of its components is such.

L([a, b], D), where D ⊂ Rn×m, is the set of all measurable and integrable
matrix-functions X : [a, b] → D.

If D1 ⊂ Rn and D2 ⊂ Rn×m, then Car([a, b] ×D1, D2) is the Carathé-
odory class, i.e., the set of all mappings F = (fkj)

n,m
k,j=1 : [a, b] ×D1 → D2

such that for each i ∈ {1, . . . , l}, j ∈ {1, . . . , m} and k ∈ {1, . . . , n}:
(a) the function fkj(·, x) : [a, b] → D2 is measurable for every x ∈ D1;
(b) the function fkj(t, · ) : D1 → D2 is continuous for almost all t ∈ [a, b],

and

sup
{|fkj(·, x)| : x ∈ D0

} ∈ L([a, b], R; gik) for every compact D0 ⊂ D1.

Car0([a, b] ×D1, D2) is the set of all mappings F = (fkj)
n,m
k,j=1 : [a, b] ×

D1 → D2 such that the functions fkj(·, x(·)) (i = 1, . . . , l; k = 1, . . . , n) are
measurable for every vector-function x : [a, b] → Rn with a bounded total
variation.

By a solution of the impulsive system (1), (2) we understand a continuous
from the left vector-function x ∈ C̃([a, b],Rn; τ1, . . . , τm0) satisfying both
the system (1) a.e. on [a, b] \ {τ1 . . . , τm0} and the relation (2) for every
k ∈ {1, . . . , m0}.

Definition 1. Let ` : Cs([a, b],Rn; τ1, . . . , τm0) → Rn be a linear con-
tinuous operator, and let `0 : Cs([a, b],Rn; τ1, . . . , τm0) → Rn

+ be a positive
homogeneous operator. We say that a pair (P, {Jl}m0

l=1), consisting of a
matrix-function P ∈ Car([a, b]×Rn,Rn×n) and a finite sequence of contin-
uous operators Jl = (Jli)n

i=1 : Rn → Rn (l = 1, . . . , m0), satisfy the Opial
condition with respect to the pair (`, `0) if:
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(a) there exist a matrix-function Φ ∈ L([a, b],Rn
+) and constant matri-

ces Ψl ∈ Rn×n(l = 1, . . . , m0) such that

|P (t, x)| ≤ Φ(t) a.e. on [a, b], x ∈ Rn

and

|Jl(x)| ≤ Ψl for x ∈ Rn (l = 1, . . . , m0);

(b)

det(In×n + Gl) 6= 0 (l = 1, . . . ,m0) (4)

and the problem
dx

dt
= A(t)x a.e. on [a, b] \ {τ1, . . . , τm0}, (5)

x(τl+)− x(τl−) = Glx(τl) (l = 1, . . . , m0), (6)

|`(x)| ≤ `0(x) (7)
has only the trivial solution for every matrix-function A ∈
L([a, b],Rn×n) and constant matrices Gl (l = 1, . . . , m0) for which
there exists a sequence yk ∈ C̃([a, b],Rn; τ1, . . . , τm0) (k = 1, 2, . . . )
such that

lim
k→+∞

t∫

a

P (τ, yk(τ)) dτ =

t∫

a

A(τ) dτ uniformly on [a, b]

and

lim
k→+∞

Jl(yk(τl)) = Gl (l = 1, . . . ,m0).

Remark 1. In particular, the condition (4) holds if

‖Ψl‖ < 1 (l = 1, . . . , m0).

Below, we will assume that f = (fi)n
i=1 ∈ Car([a, b]×Rn,Rn×n) and, in

addition, f(τl, x) is arbitrary for x ∈ Rn (l = 1, . . . , m0).

Theorem 1. Let the conditions∥∥f(t, x)−P (t, x)x
∥∥≤α(t, ‖x‖) a.e. on [a, b]\{τ1, . . . , τm0}, x∈Rn, (8)

∥∥Il(x)− Jl(x)x
∥∥ ≤ βl(‖x‖) for x ∈ Rn (l = 1, . . . ,m0) (9)

and ∣∣h(x)− `(x)
∣∣ ≤ `0(x) + `1(‖x‖s) for x ∈ BV([a, b],Rn) (10)

hold, where

` : Cs([a, b],Rn; τ1, . . . , τm0)→Rn and `0 : Cs([a, b],Rn; τ1, . . . , τm0)→Rn
+

are, respectively, linear continuous and positive homogeneous continuous
operators, the pair (P, {Jl}m0

l=1) satisfies the Opial condition with respect to
the pair (`, `0); α ∈ Car([a, b]×R+,R+) is a function, nondecreasing in the
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second variable, and βl ∈ C([a, b],R+) (l = 1, . . . ,m0) and `1 ∈ C(R,Rn
+)

are nondecreasing, respectively, functions and vector-function such that

lim sup
ρ→+∞

1
ρ

(
‖`1(ρ)‖+

b∫

a

α(t, ρ) dt +
m0∑

l=1

βl(ρ)
)

< 1. (11)

Then the problem (1), (2); (3) is solvable.

Theorem 2. Let the conditions (8)–(10),

P1(t) ≤ P (t, x) ≤ P2(t) a.e. on [a, b] \ {τ1, . . . , τm0}, x ∈ Rn,

and
J1l ≤ Ik(x) ≤ J2l for x ∈ Rn (l = 1, . . . ,m0)

hold, where P ∈ Car0([a, b] × Rn,Rn×n), Pi ∈ L([a, b],Rn×n) (i = 1, 2),
Jil ∈ Rn×n (i = 1, 2; l = 1, . . . ,m0), ` : Cs([a, b],Rn; τ1, . . . , τm0) → Rn

and `0 : Cs([a, b],Rn; τ1, . . . , τm0) → Rn
+ are, respectively, linear continuous

and positive homogeneous continuous operators; α ∈ Car([a, b] × R+,R+)
is a function, nondecreasing in the second variable, and βl ∈ C([a, b],R+)
(l = 1, . . . , m0) and `1 ∈ C(R,Rn

+) are nondecreasing, respectively, functions
and vector-function such that the condition (11) holds. Let, moreover, the
condition (4) hold and the problem (5), (6); (7) have only the trivial solution
for every matrix-function A ∈ L([a, b],Rn×n) and constant matrices Gl ∈
Rn×n (l = 1, . . . ,m0) such that

P1(t) ≤ A(t) ≤ P2(t) a.e. on [a, b] \ {τ1, . . . , τm0}, x ∈ Rn

and
J1l ≤ Gl ≤ J2l for x ∈ Rn (l = 1, . . . , m0).

Then the problem (1), (2); (3) is solvable.

Remark 2. Theorem 1.2 is of interest only in the case where P 6∈
Car([a, b]×Rn,Rn×n), because the theorem follows immediately from The-
orem 1.1 in the case where P ∈ Car([a, b]× Rn,Rn×n).

Theorem 3. Let the conditions (10),

|f(t, x)− P0(t)x| ≤
≤ Q(t)|x|+ q(t, ‖x‖) a.e. on [a, b] \ {τ1, . . . , τm0}, x ∈ Rn,

and
∣∣Il(x)− J0l · x

∣∣ ≤ Hl|x|+ hl(‖x‖) for x ∈ Rn (l = 1, . . . , m0)

hold, where P0 ∈ L([a, b],Rn×n), Q ∈ L([a, b],Rn×n
+ ), J0l and Hl ∈ Rn×n

(l = 1, . . . ,m0) are the constant matrices, ` : Cs([a, b],Rn; τ1, . . . , τm0) →
Rn and `0 : Cs([a, b],Rn; τ1, . . . , τm0) → Rn

+ are, respectively, the linear
continuous and positive homogeneous continuous operators; q ∈ Car([a, b]×
R+,Rn

+) is a vector-function, nondecreasing in the second variable, and
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hl ∈ C([a, b],R+) (l = 1, . . . , m0) and `1 ∈ C(R,Rn
+) are nondecreasing,

respectively, functions and vector-function such that

det(In×n + J0l) 6= 0 (l = 1, . . . , m0) (12)

and

‖Hl‖ · ‖(In×n + J0l)−1‖ < 1 (j = 1, 2; l = 1, . . . , m0) (13)

hold, and the system of impulsive inequalities

∣∣∣dx

dt
− P0(t)x

∣∣∣ ≤ Q(t)x a.e. on [a, b] \ {τ1, . . . , τm0}, (14)

∣∣x(τl+)− x(τl−)− J0lx(τl)
∣∣ ≤ Hl · x(τl) (l = 1, . . . , m0) (15)

have only the trivial solution under the condition (7). Then the problem
(1), (2); (3) is solvable.

Corollary 1. Let the conditions (12)
∣∣f(t, x)− P0(t)x

∣∣ ≤ q(t, ‖x‖) a.e. on [a, b] \ {τ1, . . . , τm0}, x ∈ Rn, (16)

and
∣∣Il(x)− J0l · x

∣∣ ≤ hl(‖x‖) for x ∈ Rn (l = 1, . . . ,m0) (17)

hold, where P0 ∈ L([a, b],Rn×n), J0l ∈ Rn×n (l = 1, . . . , m0) are the
constant matrices, ` : Cs([a, b],Rn; τ1, . . . , τm0) → Rn and `0 :
Cs([a, b],Rn×m; τ1, . . . , τm0) → Rn

+ are, respectively, linear continuous and
positive homogeneous continuous operators; q ∈ Car([a, b] × R+,Rn

+) is a
vector-function, nondecreasing in the second variable, and hl ∈ C([a, b],R+)
(l = 1, . . . , m0) and `1 ∈ C(R,Rn

+) are nondecreasing, respectively, functions
and vector-function such that the condition (11) holds. Let, moreover,

∣∣h(x)− `(x)
∣∣ ≤ `1(‖x‖s) for x ∈ BV([a, b],Rn) (18)

and the impulsive system

dx

dt
= P0(t)x a.e. on [a, b] \ {τ1, . . . , τm0},

x(τl+)− x(τl−) = J0lx(τl) (l = 1, . . . ,m0)

have only the trivial solution under the condition

`(x) = 0.

Then the problem (1), (2); (3) is solvable.
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For every matrix-function X ∈ L([a, b],Rn×n) and a sequence of constant
matrices Yk ∈ Rn×n (k = 1, . . . , m0) we introduce the operators[

(X, Y1, . . . , Ym0)(t)
]
0

= In for a ≤ t ≤ b,
[
(X, Y1, . . . , Ym0)(a)

]
i
= On×n (i = 1, 2, . . . ),

[
(X, Y1, . . . , Ym0)(t)

]
i+1

=

t∫

a

X(τ) · [(X, Y1, . . . , Ym0)(τ)
]
i
dτ+

+
∑

a≤τl<t

Yl ·
[
(X, Y1, . . . , Ym0)(τl)

]
i

for a < t ≤ b (i = 1, 2, . . . ). (19)

Corollary 2. Let the conditions (12), (16)–(18) hold, where

`(x) ≡
b∫

a

dL(t) · x(t),

P0 ∈ L([a, b],Rn×n), J0l ∈ Rn×n(l = 1, . . . , m0) are constant matrices,
L ∈ L([a, b],Rn×n), `0 : Cs([a, b],Rn; τ1, . . . , τm0) → Rn

+ is a positive homo-
geneous continuous operator; q ∈ Car([a, b]×R+,Rn

+) is a vector-function,
nondecreasing in the second variable, and hl ∈ C([a, b],R+) (l = 1, . . . , m0)
and `1 ∈ C(R,Rn

+) are nondecreasing, respectively, functions and vector-
function such that the condition (11) holds. Let, moreover, there exist nat-
ural numbers k and m such that the matrix

Mk = −
k−1∑

i=0

b∫

a

dL(t) · [(P0, Gl, . . . , Gm0)(t)
]
i

is nonsingular and

r(Mk,m) < 1, (20)

where the operators [(P0, G1, . . . , Gm0)(t)]i (i = 0, 1, . . . ) are defined by (19),
and

Mk,m =
[(|P0|, |G1|, . . . , |Gm0 |

)
(b)

]
m

+

+
m−1∑

i=0

[(|P0|, |G1|, . . . , |Gm0 |
)
(b)

]
i
×

×
b∫

a

dV (M−1
k L)(t) ·

[(|P0|, |G1|, . . . , |Gm0 |
)
(t)

]
k
.

Then the problem (1), (2); (3) is solvable.

Corollary 3. Let the conditions (12), (16)–(18) and

`(x) ≡
n0∑

j=1

Ljx(tj) (21)
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hold, where P0 ∈ L([a, b],Rn×n), J0l ∈ Rn×n (l = 1, . . . , m0) are cons-
tant matrices, tj ∈ [a, b] and Lj ∈ Rn×n (j = 1, . . . , n0), `0 :
Cs([a, b],Rn; τ1, . . . , τm0) → Rn

+ is a positive homogeneous continuous op-
erator; q ∈ Car([a, b] × R+,Rn

+) is a vector-function, nondecreasing in the
second variable, and hl ∈ C([a, b],R+) (l = 1, . . . , m0) and `1 ∈ C(R,Rn

+)
are nondecreasing, respectively, functions and vector-function such that the
condition (11) holds. Let, moreover, there exist natural numbers l and m
such that the matrix

Mk =
n0∑

j=1

k−1∑

i=0

Lj

[
(P0, Gl, . . . , Gm0)(tj)

]
i

is nonsingular and the inequality (20) holds, where

Mk,m =
[(|P0|, |Gl|, . . . , |Gm0 |

)
(b)

]
m

+

+
( m−1∑

i=0

[(|P0|, |Gl|, . . . , |Gm0 |
)
(b)

]
i

)
×

×
n0∑

j=1

|M−1
k Lj | ·

[(|P0|, |Gl|, . . . , |Gm0 |)(tj)
]

k
.

Then the problem (1), (2); (3) is solvable.

Corollary 4. Let the conditions (12), (16)–(18) and (21) hold, where
P0 ∈ L([a, b],Rn×n), J0l ∈ Rn×n (l = 1, . . . ,m0) are the constant matrices,
tj ∈ [a, b] and Lj ∈ Rn×n (j = 1, . . . , n0), `0 : Cs([a, b],Rn; τ1, . . . , τm0) →
Rn

+ is a positive homogeneous continuous operator; q ∈ Car([a, b]×R+,Rn
+)

is a vector-function, nondecreasing in the second variable, and hl ∈
C([a, b],R+) (l = 1, . . . , m0) and `1 ∈ C(R,Rn

+) are nondecreasing, respec-
tively, functions and vector-function such that the condition (11) holds. Let,
moreover,

det
( n0∑

j=1

Lj

)
6= 0 and r(L0 · V (A)(b)) < 1,

where

L0 = In×n +
∣∣∣∣
( n0∑

j=1

Lj

)−1
∣∣∣∣ ·

n0∑

j=1

|Lj | and A0 =

b∫

a

|P0(t)| dt +
m0∑

l=1

|Gl|.

Then the problem (1), (2); (3) is solvable.

Theorem 4. Let the conditions (12), (13),
∣∣f(t, x)− f(t, y)− P0(t)(x− y)

∣∣ ≤ Q(t)|x− y|
a.e. on [a, b] \ {τ1, . . . , τm0}, x, y ∈ Rn,∣∣Il(x)−Il(y)−J0l · (x−y)

∣∣≤Hk · |x−y| for x, y∈Rn (k= l, . . . ,m0)
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and ∣∣h(x)− h(y)− `(x− y)
∣∣ ≤ `0(x− y) for x, y ∈ BV([a, b],Rn)

hold, where P0 ∈ L([a, b],Rn×n), Q ∈ L([a, b],Rn×n
+ ), J0k and Hl ∈ Rn×n

(l = 1, . . . ,m0) are the constant matrices, ` : Cs([a, b],Rn; τ1, . . . , τm0) →
Rn and `0 : Cs([a, b],Rn; τ1, . . . , τm0) → Rn

+ are, respectively, linear con-
tinuous and positive homogeneous continuous operators. Let, moreover, the
system of impulsive inequalities (14), (15) have only the trivial solution un-
der the condition (7). Then the problem (1), (2); (3) is solvable.
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POSITIVE SOLUTIONS OF NONLOCAL PROBLEMS FOR
NONLINEAR SINGULAR DIFFERENTIAL SYSTEMS

Abstract. For nonlinear differential systems with singularities with re-
spect to phase variables, sufficient conditions for the existence of positive
solutions of nonlocal problems are established.

îâäæñéâ. ŽîŽûîòæãæ áæòâîâêùæŽèñîæ ïæïðâéâĲæïŽåãæï ïæêàñèŽîë-
ĲâĲæå òŽäñîæ ùãèŽáâĲæï éæéŽîå áŽáàâêæèæŽ ŽîŽèëçŽèñîæ ŽéëùŽêâ-
Ĳæï áŽáâĲæåæ ŽéëêŽýïêâĲæï ŽîïâĲëĲæï ïŽçéŽîæïæ ìæîëĲâĲæ.

2000 Mathematics Subject Classification: 34B10, 34B16, 34B18.
Key words and phrases: Nonlinear differential system, singularity with
phase variables, nonlocal problem, positive solution.

Let −∞ < a < b < +∞, Rn
+ be the set of n-dimensional real vectors

(xi)n
i=1 with nonnegative components x1, . . . , xn,

Rn
0+ =

{
(xi)n

i=1 : x1 > 0, . . . , xn > 0
}
,

and let C([a, b];Rn
+) be the set of continuous vector functions (ui)n

i=1 :
[a, b] → Rn

+. Consider the nonlocal problem

dui

dt
= fi(t, u1, . . . , un) (i = 1, . . . , n), (1)

ui(ti) = ϕi(u1, . . . , un) (i = 1, . . . , n), (2)

where fi : ]a, b[×Rn
0+ → R are functions satisfying the local Carathéodory

conditions, a ≤ ti ≤ b (i = 1, . . . , n), and ϕk : C([a, b];Rn
+) → R+

(k = 1, . . . , n) are continuous and bounded on every bounded subset of
C([a, b];Rn

+) functionals.
In the case where the functions fi (i = 1, . . . , n) have no singularities with

respect to phase variables, boundary value problems of the type (1), (2) have
been studied in [1]–[4].

The present paper deals with the case not investigated yet, when fi

(i = 1, . . . , n) have singularities with respect to the phase variables, that is
the case, where

lim
xk→0

∣∣fi(t, x1, . . . , xn)
∣∣ = +∞ (i, k = 1, . . . , n).

Throughout the paper, along with the above-introduced we will use the
following notations.

(xik)n
i,k=1 is the matrix with components xik (i, k = 1, . . . , n).

r(X) is the spectral radius of the n× n matrix X.
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If u : [a, b] → R is a continuous function, then

‖u‖C = max
{‖u(t)‖ : a ≤ t ≤ b}.

If δk : [a, b] → [0, +∞[ (k = 1, . . . , n) are continuous functions satisfying
the conditions

δk(t) > 0 for almost all t ∈ [a, b] (k = 1, . . . , n),

and ρ > 0, then

f∗(δ1, . . . , δn, ρ)(t) = sup
{ n∑

i=1

∣∣fi(t, x1, . . . , xn)
∣∣ :

δ1(t) < x1 < δ1(t) + ρ, . . . , δn(t) < xn < δn(t) + ρ
}

.

Along with (1), (2), we consider the auxiliary problem

dui

dt
= λfi(t, u1, . . . , un) + (1− λ)δi(t) (i = 1, . . . , n), (3)

ui(ti) = λϕi(u1, . . . , un) (i = 1, . . . , n), (4)

ui(t) ≥ δi(t) for a ≤ t ≤ b, (5)

depending on the parameter λ ∈ ]0, 1] and on absolutely continuous func-
tions δi : [a, b] → [0, +∞[ (i = 1, . . . , n).

An absolutely continuous vector function (ui)n
i=1 : [a, b] → Rn

+ is said
to be a positive solution of the system (1) (of the system (3)) if it almost
everywhere on [a, b] satisfies this system and

ui(t) > 0 for almost all t ∈ [a, b] (i = 1, . . . , n).

A positive solution (ui)n
i=1 of the system (1) (of the system (3)), satisfying

the conditions (2) (the conditions (4) and (5)), is called a positive solution
of the problem (1), (2) (a solution of the problem (3), (4), (5)).

The following theorem is valid.

Theorem 1 (The Principle of a Priori Boundedness). Let for any i ∈
{1, . . . , n} on the set

{
(t, x1, . . . , xn) : t ∈ [a, b] \ I0, xk > δk(t) for k 6= i, xi = δi(t)

}

the inequality
[
fi(t, x1, . . . , xn)− δ′i(t)

]
sgn(t− ti) ≥ 0

hold, where I0 is a set of zero measure, and δk : [a, b] → [0,+∞[ (k =
1, . . . , n) are absolutely continuous functions such that

δi(t) > 0 for t ∈ [a, b] \ I0 (i = 1, . . . , n),

ϕi(u1, . . . , un) ≥ δi(ti) for (uk)n
k=1 ∈ C([a, b];Rn

+) (i = 1, . . . , n).
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Let, moreover,
b∫

a

f∗(δ1, . . . , δn; ρ)(t) dt < +∞ for ρ > 0

and there exist a positive constant ρ0 such that for any λ ∈ ]0, 1] every
solution of the problem (3), (4), (5) admits the estimate

n∑

i=1

‖ui‖C ≤ ρ0.

Then the problem (1), (2) has at least one positive solution.

The operator (ϕ0i)n
i=1 : C([a, b];Rn

+) → Rn
+ is said to be positively ho-

mogeneous if for any i ∈ {1, . . . , n}, λ > 0 and (uk)n
k=1 ∈ C([a, b];Rn

+) the
equality

ϕ0i(λu1, . . . , λun) = λϕ0i(u1, . . . , un)
is satisfied.

Following [1], we introduce

Definition 1. We say that the pair ((pik)n
i,k=1; (ϕ0i)n

i=1), consisting of
the matrix function (pik)n

i,k=1 with the Lebesgue integrable components pik :
[a, b] → R+ (i, k = 1, . . . , n) and the positively homogeneous nondecreasing
operator (ϕ0i)n

i=1 : C([a, b];Rn
+) → Rn

+ belongs to the set U(t1, . . . , tn) if the
problem

u′i(t) sgn(t− ti) ≤
n∑

k=1

pik(t)uk(t) (i = 1, . . . , n),

ui(ti) ≤ ϕ0i(u1, . . . , un) (i = 1, . . . , n)

has no a nonzero, nonnegative solution.

On the basis of Theorem 1, the following theorem can be proved.

Theorem 2. Let

ϕi(u1, . . . , un) ≤ ϕ0i

(
u1, . . . , un

)
+ γ for (uk)n

k=1 ∈ C([a, b];Rn
+)

(i = 1, . . . , n)

and

0 ≤ (
fi(t, x1, . . . , xn)− pi(t)xλi

i

)
sgn(t− ti) ≤

≤
n∑

k=1

pik(t)xk for t ∈ [a, b] \ I0, (xk)n
k=1 ∈ Rn

0+ (i = 1, . . . , n), (6)

where I0 is a set of zero measure, γ is a nonnegative constant, λi < 1
(i = 1, . . . , n), pi : [a, b] → R0+ (i = 1, . . . , n) are the Lebesgue integrable
functions and (

(pik)n
i,k=1; (ϕ0i)n

i=1

) ∈ U(t1, . . . , tn).
Then the problem (1), (2) has at least one positive solution.
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The above Theorem 2 and Lemma 5.4 of [1] result in

Corollary 1. Let

ϕi(u1, . . . , un) ≤
n∑

k=1

`ik‖uk‖C + γ for (uk)n
k=1 ∈ C([a, b];R+)

(i = 1, . . . , n),

and the inequalities (6) be fulfilled, where I0 is a set of zero measure, `ik

(i, k = 1, . . . , n) and γ are nonnegative constants, λi < 1 (i = 1, . . . , n),
pi : [a, b] → R0+ and pik : [a, b] → R+ (i = 1, . . . , n) are the Lebesgue
integrable functions. If, moreover,

r(Λ) < 1, where Λ =
(

`ik +

b∫

a

pik(t) dt

)n

i,k=1

,

then the problem (1), (2) has at least one positive solution.
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K. Mansimov, T. Melikov, and T. Tadumadze

VARIATION FORMULAS OF SOLUTION FOR A
CONTROLLED DELAY FUNCTIONAL-DIFFERENTIAL

EQUATION TAKING INTO ACCOUNT DELAYS
PERTURBATIONS AND THE MIXED INITIAL CONDITION

Abstract. Variation formulas of solution are obtained for a nonlinear
controlled delay functional-differential equation with respect to perturba-
tions of initial moment, constant delays, initial vector, initial functions and
control function. The effects of delay perturbations and the mixed initial
condition are discovered in the variation formulas.

îâäæñéâ. ïŽéŽîåæ áŽàãæŽêâĲñè ŽîàñéâêðæŽêæ òñêóùæëêŽèñî-áæòâ-
îâêùæŽèñîæ àŽêðëèâĲæïŽåãæï éæôâĲñèæŽ ŽéëêŽýïêæï ãŽîæŽùææï òë-
îéñèâĲæ ïŽûõæïæ éëéâêðæï, éñáéæãæ áŽàãæŽêâĲâĲæï, ïŽûõæïæ ãâóðë-
îæï, ïŽûõæïæ òñêóùæâĲæïŽ áŽ éŽîåãæï òñêóùææï öâöòëåâĲâĲæï éæéŽîå.
ãŽîæŽùææï òëîéñèâĲöæ àŽéëãèâêæèæŽ áŽàãæŽêâĲâĲæï öâöòëåâĲæïŽ áŽ
öâîâñèæ ïŽûõæïæ ìæîëĲæï âòâóðâĲæ.

2010 Mathematics Subject Classification. 34K99.
Key words and phrases. Controlled delay functional-differential equa-
tion, variation formula of solution, effect of delay perturbation, effect of
the mixed initial condition.

1. Introduction

In the present paper, variation formulas of solution (variation formulas)
are obtained for a nonlinear controlled delay functional-differential equa-
tion under perturbations of initial moment, constant delays, initial vector,
initial functions and control function. The effects of delays perturbations
and the mixed initial condition are discovered in the variation formulas.
The mixed initial condition means that at the initial moment, some coordi-
nates of the trajectory do not coincide with the corresponding coordinates
of the initial function, whereas the others coincide. The variation formula
allows one to construct an approximate solution of the perturbed equation
in an analytical form on the one hand, and in the theory of optimal con-
trol it plays the basic role in proving the necessary conditions of optimality
[1]–[11], on the other. Variation formulas for various classes of functional-
differential equations without perturbation of delay are given in [2], [6], [7]
and [9]–[13]. Variation formulas for delay functional-differential equations
with the continuous and discontinuous initial condition taking into account
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constant delay perturbation are proved in [14] and [15], respectively. Varia-
tion formulas for controlled delay functional-differential equations with the
continuous initial condition taking into account constant delay perturbation
are proved in [16].

2. Formulation of the Main Results

Let Rn
x be the n-dimensional vector space of points x = (x1, . . . , xn)T ,

where T denotes transposition; suppose P ⊂ Rk
p , Z ⊂ Rm

z and W ⊂ Rr
u

are open sets and O = (P, Z)T = {x = (p, z)T ∈ Rn
x : p ∈ P, z ∈ Z}, with

k+m = n. Let the n-dimensional function f(t, x, p, z, u) satisfy the following
conditions: for almost all t ∈ I = [a, b], the function f(t, ·) : O×P×Z×W →
Rn

x is continuously differentiable; for any (x, p, z, u) ∈ O × P × Z × W ,
the functions f(t, x, p, z, u), fx(·), fp(·), fz(·)fu(·) are measurable on I; for
arbitrary compacts K ⊂ O, U ⊂ W there exists a function mK,U (·) ∈
L(I, [0,∞)), such that for any x ∈ K, (p, z)T ∈ K, u ∈ U and for almost all
t ∈ I the inequality

|f(t, x, p, z, u)|+ |fx(·)|+ |fp(·)|+ |fz(·)|+ |fu(·)| ≤ mK,U (t)

is fulfilled.
Let 0 < τ1 < τ2, 0 < σ1 < σ2 be the given numbers and Eϕ = Eϕ(I1, R

k
p)

be the space of continuous functions ϕ : I1 → Rk
p , where I1 = [τ̂ , b], τ̂ =

a−max{τ2, σ2}. Further,

Φ =
{
ϕ ∈ Eϕ : ϕ(t) ∈ P

}
and G =

{
g ∈ Eg = Eg(I1, R

m
z ) : g(t) ∈ Z

}

are the sets of initial functions. Let Eu be the space of bounded measurable
functions u : I → Rr

u and Ω = {u ∈ Eu : u(t) ∈ W , t ∈ I, cl u(I) ⊂ W}
be a set of control functions, where u(I) = {u(t) : t ∈ I} and cl u(I) is the
closure of the set u(I).

To any element

µ = (t0, τ, σ, p0, ϕ, g, u) ∈ Λ = (a, b)× (τ1, τ2)× (σ1, σ2)× P × Φ×G× Ω,

we assign the controlled delay functional-differential equation

ẋ(t) = (ṗ(t), ż(t))T = f
(
t, x(t), p(t− τ), z(t− σ), u(t)

)
(2.1)

with a mixed initial condition

x(t) = (ϕ(t), g(t))T , t ∈ [τ̂ , t0), x(t0) = (p0, g(t0))T . (2.2)

The condition (2.2) is said to be a mixed initial condition; it consists of two
parts: the first part is p(t) = ϕ(t), t ∈ [τ̂ , t0), p(t0) = p0, the discontinuous
part, since generally p(t0) 6= ϕ(t0); the second part is z(t) = g(t), t ∈ [τ̂ , t0],
the continuous part, since always z(t0) = g(t0).

Definition 2.1. Let µ = (t0, τ, σ, p0, ϕ, g, u) ∈ Λ. A function x(t) =
x(t; µ) ∈ O, t ∈ [τ̂ , t1], t1 ∈ (t0, b), is called a solution of equation (2.1)
with the initial condition (2.2) or a solution corresponding to the element
µ and defined on the interval [τ̂ , t1] if it satisfies the condition (2.2) and is
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absolutely continuous on the interval [t0, t1] and satisfies the equation (2.1)
almost everywhere on [t0, t1].

Let µ0 = (t00, τ0, σ0, p00, ϕ0, g0, u0) ∈ Λ be a fixed element. In the space
Eµ = R1

t0 ×R1
τ ×R1

σ×Rk
p×Eϕ×Eg×Eu we introduce the set of variations

V =
{

δµ = (δt0, δτ, δσ, δp0, δϕ, δg, δu) ∈ Eµ − µ0 : |δt0| ≤ α,

|δτ | ≤ α, |δσ| ≤ α, |δp0| ≤ α, δϕ =
ν∑

i=1

λiδϕi,

δg =
ν∑

i=1

λiδgi, δu =
ν∑

i=1

λiδui, |λi| ≤ α, i = 1, ν

}
,

where δϕi ∈ Eϕ − ϕ0, δgi ∈ Eg − g0, δui ∈ Eu − u0, i = 1, ν, are the fixed
functions; α > 0 is a fixed number.

Let x0(t) = (p0(t), z0(t))T be the solution corresponding to the element
µ0 and defined on the interval [τ̂ , t10], with t10 < b. There exist numbers
δ1 > 0 and ε1 > 0 such that for arbitrary (ε, δµ) ∈ [0, ε1] × V we have
µ0 + εδµ ∈ Λ. In addition, to this element there corresponds the solution
x(t; µ0 + εδµ) defined on the interval [τ̂ , t10 + δ1] ⊂ I1 (see Theorem 5.3 in
[17, p. 111]).

Due to the uniqueness, the solution x(t;µ0) is a continuation of the so-
lution x0(t) on the interval [τ̂ , t10 + δ1]. Therefore, the solution x0(t) is
assumed to be defined on the interval [τ̂ , t10 + δ1].

Let us define the increment of the solution x0(t) = x(t;µ0):

∆x(t; εδµ) = x(t; µ0 + εδµ)− x0(t), (t, ε, δµ) ∈ [τ̂ , t10 + δ1]× [0, ε1]× V.

Theorem 2.1. Let the following conditions hold:

2.1. t00 + τ0 < t10;

2.2. the functions ϕ0(t), g0(t), t ∈ I1, are absolutely continuous and
ϕ̇0(t), ġ0(t) are bounded; there exist compact sets K0 ⊂ O and U0 ⊂
W containing neighborhoods of sets (ϕ0(I1), g0(I1))T ∪ x0([t00, t10])
and cl u0(I), respectively, such that the function f(t, x, p, z, u),
(t, x) ∈ I ×K0, (p, z)T ∈ K0, u ∈ U0, is bounded;

2.3. there exist the limits

lim
t→t00−

ġ0(t) = ġ−0 ,

lim
w→w0

f(w, u0(t)) = f−0 , w∈(t00 − τ0, t00]×O×P ×Z,

lim
(w1,w2)→(w01,w02)

[
f(w1, u0(t))− f(w2, u0(t))

]
= f−01,

w1, w2 ∈ (t00, t00 + τ0]×O × P × Z,
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where

w = (t, x, p, z),

w0 =
(
t00, x00, ϕ0(t00 − τ0), g0(t00 − σ0)

)
,

x00 = (p00, g0(t00))T ,

w01 =
(
t00 + τ0, x0(t00 + τ0), p00, z0(t00 + τ0 − σ0)

)
,

w02 =
(
t00 + τ0, x0(t00 + τ0), ϕ0(t00), z0(t00 + τ0 − σ0)

)
.

Then there exist numbers ε2 ∈ (0, ε1] and δ2 ∈ (0, δ1] such that

∆x(t; εδµ) = εδx(t; δµ) + o(t; εδµ) (2.3)

for arbitrary

(t, ε, δµ)∈ [t10 − δ2, t10 + δ2]×[0, ε2]×
{
δµ ∈ V : δt0 ≤ 0, δτ ≤ 0, δσ ≤ 0

}
,

where

δx(t; δµ) =
{

Y (t00; t)
[
(Θk×1, ġ

−
0 )T − f−0

]− Y (t00 + τ0; t)f−01
}

δt0−
− Y (t00 + τ0; t)f−01δτ + β(t; εδµ), (2.4)

β(t; εδµ) = Y (t00; t)(δp0, δg(t00))T−

−
{ t∫

t00

Y (ξ; t)fp[ξ]ṗ0(ξ − τ0) dξ

}
δτ−

−
{ t∫

t00

Y (ξ; t)fz[ξ]ż0(ξ − σ0) dξ

}
δσ+

+

t00∫

t00−τ0

Y (ξ + τ0; t)fp[ξ + τ0]δϕ(ξ) dξ+

+

t00∫

t00−σ0

Y (ξ + σ0; t)fz[ξ + σ0]δg(ξ) dξ+

+

t∫

t00

Y (ξ; t)fu[ξ]δu(ξ) dξ; (2.5)

lim
ε→0

o(t; εδµ)
ε

= 0

uniformly for

(t, δµ) ∈ [t10 − δ2, t10 + δ2]×
{
δµ ∈ V : δt0 ≤ 0, δτ ≤ 0, δσ ≤ 0

}
;
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Θk×1 is the k×1 zero matrix, Y (s; t) is the n×n matrix function satisfying
on the interval [t00, t] the equation

Yξ(ξ; t) = −Y (ξ; t)fx[ξ]−
(
Y (ξ + τ0; t)fp[ξ + τ0], Y (ξ + σ0; t)fz[ξ + σ0]

)
,

and the condition

Y (ξ; t) =

{
Hn×n for ξ = t,

Θn×n for ξ > t.

Here, Hn×n is the n× n identity matrix,

fx[ξ]=fx

(
ξ, x0(ξ), p0(ξ−τ0), z0(ξ−σ0), u0(ξ)

)
, ṗ0(ξ−τ0)= ṗ0(s)|s=ξ−τ0

,

under ṗ0(s) is assumed derivative of the function p0(s) on the set [τ̂ , t00) ∪
(t00, t10 + δ2].

Some comments. The function δx(t; δµ) is called the variation of the
solution x0(t) on the interval [t10 − δ2, t10 + δ2] and the expression (2.4) is
called the variation formula.

c 1) Theorem 2.1 corresponds to the case where the variations at the
points t00, τ0, σ0 are performed simultaneously on the left.

c 2) The addend

−
{

Y (t00 + τ0; t)f−01 +

t∫

t00

Y (ξ; t)fp[ξ]ṗ0(ξ − τ0) dξ

}
δτ−

−
{ t∫

t00

Y (ξ; t)fz[ξ]ż0(ξ − σ0) dξ

}
δσ

is the effect of perturbations of the delays τ0 and σ0 (see (2.4) and
(2.5)).

c 3) The expression

Y (t00; t)(δp0, δg(t00))T +

+
{

Y (t00; t)
[
(Θk×1, ġ

−
0 )T − f−0

]− Y (t00 + τ0; t)f−01

}
δt0

is the effect of the mixed initial condition (2.2) under perturbations
of initial moment t00, initial vector p00 and function g0(t).
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c 4) The expression

t00∫

t00−τ0

Y (ξ + τ0; t)fp[ξ + τ0]δϕ(ξ) dξ+

+

t00∫

t00−σ0

Y (ξ + σ0; t)fz[ξ + σ0]δg(ξ) dξ +

t∫

t00

Y (ξ; t)fu[ξ]δu(ξ) dξ

in the formula (2.5) is the effect of perturbations of the initial func-
tions ϕ0(t), g0(t) and the control function u0(t).

c 5) The variation formula allows one to obtain an approximate solution
of the perturbed functional-differential equation

ẋ(t) = f
(
t, x(t), p(t− τ0 − εδτ), z(t− σ0 − εδσ), u0(t) + εδu(t)

)

with the perturbed initial condition

x(t) =
(
ϕ0(t) + εδϕ(t), g0(t) + εδg(t)

)T
, t ∈ [τ̂ , t00 + εδt0),

x(t00 + εδt0) =
(
p00 + εδp0, g0(t00) + εδg(t00)

)T
.

In fact, for a sufficiently small ε ∈ (0, ε2] from (2.3) it follows that

x(t; µ0 + εδµ) ≈ x0(t) + εδx(t; δµ).

Theorem 2.2. Let the conditions 2.1 and 2.2 of Theorem 2.1 hold.
Moreover, there exist the limits

lim
t→t00+

ġ0(t) = ġ+
0 ,

lim
w→w0

f(w, u0(t)) = f+
0 , w ∈ [t00, t10)×O × P × Z,

lim
(w1,w2)→(w01,w02)

[
f(w1, u0(t))− f0(w2, u0(t))

]
= f+

01,

w1, w2 ∈ [t00 + τ0, t10)×O × P × Z.

Then there exist numbers ε2 ∈ (0, ε1] and δ2 ∈ (0, δ1] such that for arbitrary

(t, ε, δµ) ∈ [t10 − δ2, t10 + δ2]× [0, ε2]× {δµ ∈ V : δt0 ≥ 0, δτ ≥ 0, δσ ≥ 0}
the formula (2.3) holds, where

δx(t; δµ) =
{

Y (t00; t)
[
(Θk×1, ġ

+
0 )T − f+

0

]− Y (t00 + τ0; t)f+
01

}
δt0−

− Y (t00 + τ0; t)f+
01δτ + β(t; εδµ).

Theorem 2.2 corresponds to the case where the variations at the points
t00, τ0, σ0 are performed simultaneously on the right.
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Theorem 2.3. Let the conditions of Theorems 2.1 and 2.2 hold. More-
over,

(Θk×1, ġ
−
0 )T − f−0 = (Θk×1, ġ

+
0 )T − f+

0 =: f̂0, f
−
01 = f+

01 =: f̂01.

Then there exist numbers ε2 ∈ (0, ε1] and δ2 ∈ (0, δ1] such that for arbitrary
(t, ε, δµ) ∈ [t10 − δ2, t10 + δ2]× [0, ε2]× V the formula (2.3) holds, where

δx(t; δµ) =
{

Y (t00; t)f̂0 − Y (t00 + τ0; t)f̂01

}
δt0−

− Y (t00 + τ0; t)f̂01δτ + β(t; εδµ).

Theorem 2.3 corresponds to the case where at the points t00, τ0, σ0 the
two-sided variations are simultaneously performed. Theorems 2.1–2.3 are
proved by the method given in [10]. If t00 + τ0 > t10, then Theorems 2.1–
2.3 are also valid. In this case the number δ2 is so small that t00 + τ0 >
t10 + δ2, therefore in the variation formulas we have Y (t00 + τ0; t) = Θn×n,
t ∈ [t10 − δ2, t10 + δ2]. If t00 + τ0 = t10, then Theorem 2.1 is valid on the
interval [t10, t10 + δ2] and Theorem 2.2 is valid on the interval [t10− δ2, t10].
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Nino Partsvania

ON TWO–POINT BOUNDARY VALUE PROBLEMS FOR
TWO–DIMENSIONAL NONLINEAR DIFFERENTIAL

SYSTEMS WITH STRONG SINGULARITIES

Abstract. For two-dimensional nonlinear differential systems with strong
singularities with respect to a time variable, unimprovable sufficient condi-
tions for the solvability and unique solvability of two-point boundary value
problems are established.

îâäæñéâ. ëîàŽêäëéæèâĲæŽêæ ŽîŽûîòæãæ áæòâîâêùæŽèñîæ ïæïðâ-
éâĲæïŽåãæï úèæâîæ ïæêàñèŽîëĲâĲæå áîëæåæ ùãèŽáæï éæéŽîå áŽá-
àâêæèæŽ ëîûâîðæèëãŽê ïŽïŽäôãîë ŽéëùŽêŽåŽ ŽéëýïêŽáëĲæïŽ áŽ
ùŽèïŽýŽá ŽéëýïêŽáëĲæï ŽîŽàŽñéþëĲâïâĲŽáæ ïŽçéŽîæïæ ìæîëĲâĲæ.

2010 Mathematics Subject Classification: 34B16.
Key words and phrases: Two-dimensional differential system, nonlin-
ear, two-point boundary value problem, strong singularity.

Let −∞ < a < b < +∞, and let fi : ]a, b[×R → R (i = 1, 2) be contin-
uous functions. In the open interval ]a, b[, we consider the two-dimensional
nonlinear differential system

du1

dt
= f1(t, u2),

du2

dt
= f2(t, u1) (1)

with boundary conditions of one of the following two types:

lim
t→a

u1(t) = 0, lim
t→b

u1(t) = 0, (21)

and
lim
t→a

u1(t) = 0, lim
t→b

u2(t) = 0. (22)

A vector function (u1, u2) with continuously differentiable components
ui :]a, b[→ R (i = 1, 2) is said to be a solution of the system (1) if it satisfies
that system at each point of ]a, b[.

A solution of the system (1), satisfying the boundary conditions (21) (the
boundary conditions (22)), is said to be a solution of the problem (1), (21)
(a solution of the problem (1), (22)).

A solution of the problem (1), (21) (of the problem (1), (22)), satisfying
the condition

b∫

a

u2
2(t)dt < +∞, (3)



148

is said to be a solution of the problem (1), (21), (3) (a solution of the problem
(1), (22), (3)).

Let

[f2(t, x)]− =
1
2

(|f2(t, x)| − f2(t, x)) .

Theorems below on the solvability and unique solvability of the problem
(1), (21), (3) cover the case, where

t0∫

a

(t− a)[f2(t, x)]−dt =

=

b∫

t0

(b− t)[f2(t, x)]−dt = +∞ for t0 ∈]a, b[, x 6= 0. (41)

Analogous theorems for the problem (1), (22), (3) cover the case, where

b∫

a

(t− a)[f2(t, x)]−dt = +∞ for x 6= 0. (42)

In the case, where the condition (41) (the condition (42)) is satisfied, we
say that the system (1) has strong singularities at the points a and b (at
the point a). In both cases, roughly speaking, the orders of singularity of
the function f2 with respect to the time variable are no less than 2, i.e., no
less than the dimension of the considered differential system. Just because
of that reason these singularities are said to be strong in the Agarwal–
Kiguradze sence [1]. The above-mentioned cases essentially differ from so-
called weak singular cases, where for arbitrary t0 ∈]a, b[ and x 6= 0, the
following conditions

t0∫

a

[f2(t, x)]−dt =

b∫

t0

[f2(t, x)]−dt = +∞ or

b∫

a

[f2(t, x)]−dt = +∞

hold but
b∫

a

(t− a)(b− t)[f2(t, x)]−dt < +∞.

In the case of strong singularity, in contrast to the case of weak singu-
larity, the problem (1), (21), (3), generally speaking, is not equivalent to the
problem (1), (21). Analogously, the problem (1), (22), (3) is not equivalent
to the problem (1), (22). To convince ourselves that this is so, let us consider
the case, where the system (1) has the form

du1

dt
= u2,

du2

dt
= − µ

(t− a)2
u1. (1′)
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If µ satisfies the inequality

0 < µ <
1
4

,

then the problem (1′), (21),(3) has only the trivial solution whereas the
problem (1′), (21) has infinite set of solutions

u1(t) = c
[
(t− a)λ1 − (b− a)λ1−λ2(t− a)λ2

]
, u2(t) =

= c
[
λ1(t− a)λ1−1 − λ2(b− a)λ1−λ2(t− a)λ2−1

]
, c ∈ R,

where

λ1 =
1 +

√
1− 4µ

2
, λ2 =

1−√1− 4µ

2
.

Analogously, the problem (1′), (22), (3) has only the trivial solution, while
the problem (1′), (22) has infinite set of solutions

u1(t) = c
[
(t− a)λ1 − λ1

λ2
(b− a)λ1−λ2(t− a)λ2

]
, u2(t) =

= cλ1

[
(t− a)λ1−1 − (b− a)λ1−λ2(t− a)λ2−1

]
, c ∈ R.

For the weakly singular system (1) and its various particular cases, unim-
provable in a certain sense sufficient conditions for the solvability and well-
posedness of problems of the type (1), (21) and (1), (22) are contained in
[2]–[7], [11]–[14], [17]–[19]. Two-point boundary value problems for higher
order differential equations with strong singularities are investigated in de-
tail by I. Kiguradze and R. P. Agarwal (see, [1], [8]–[10]). Conditions, guar-
anteeing the existence of extremal solutions of two-point boundary value
problems for second order nonlinear differential equations with strong sin-
gularities, are contained in [16]. The Agarwal–Kiguradze type theorems for
two-dimensional linear differential systems are given in [15]. Below we give
analogous results for the problems (1), (21), (3) and (1), (22), (3).

First we consider the problem (1), (21), (3). The following theorems are
valid.

Theorem 1. Let in the domain ]a, b[×R the inequalities

δ|x| ≤ [
f1(t, x)− f1(t, 0)

]
sgn x ≤ `0|x|, (5)

[
f2(t, x)− f2(t, 0)

]
sgnx ≥ −`

(
1

(t− a)2
+

1
(b− t)2

)
|x| (6)

be fulfilled, where δ, `0, and ` are positive constants such that

4``0 < 1. (7)

If, moreover,
b∫

a

f2
1 (t, 0)dt < 0,

b∫

a

(t− a)1/2(b− t)1/2|f2(t, 0)|dt < +∞, (8)

then the problem (1), (21), (3) has at least one solution.
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Theorem 2. Let in the domain ]a, b[×R the conditions

δ|x− y| ≤ [
f1(t, x)− f1(t, y)

]
sgn(x− y) ≤ `0|x− y|, (9)

[
f2(t, x)− f2(t, y)

]
sgn(x− y) ≥ −`

(
1

(t− a)2
+

1
(b− t)2

)
|x− y| (10)

be fulfilled, where δ, `0, and ` are positive constants, satisfying the inequality
(7). If, moreover, the condition (8) holds, then the problem (1), (21), (3) has
one and only one solution.

Note that the condition (7) in Theorems 1 and 2 is unimprovable in the
sense that it cannot be replaced by the non-strict inequality

4``0 ≤ 1. (7′)

Indeed, consider the case, where

f1(t, x) = x, f2(t, x) = − 1
4(t− a)2

x + 9.

Then the conditions (5), (6), (8)–(10) are satisfied, where δ = `0 = 1
and ` = 1

4 . Consequently, all the conditions of Theorems 1 and 2 are
fulfilled except the condition (7), instead of which the inequality (7′) is
satisfied. Nevertheless, in the considered case the problem (1), (21), (3) has
no solution. The fact is that in that case an arbitrary solution of the system
(1) admits the representation

u1(t) = c1(t− a)1/2 + c2(t− a)1/2 ln(t− a) + 4(t− a)2,

u2(t) =
1
2

c1(t− a)−1/2 + c2(t− a)−1/2

(
1
2

ln(t− a) + 1
)

+ 8(t− a),

where c1 and c2 are arbitrary real numbers, and consequently,

b∫

a

u2
2(t)dt = +∞ for |c1|+ |c2| 6= 0.

Consider now the problem (1), (22), (3). Suppose

f∗2 (t, x) = max
{|f2(t, y)| : |y| ≤ x

}
for a < t < b, x > 0.

Theorem 3. Let in the domain ]a, b[×R the inequalities (5) and

[
f2(t, x)− f2(t, 0)

]
sgnx ≥ − `

(t− a)2
|x|
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be fulfilled, where δ, `0, and ` are positive constants, satisfying the condition
(7). If, moreover,

b∫

a

f2
1 (s, 0)ds < +∞,

b∫

a

(s− a)1/2|f2(s, 0)|ds <

< +∞,

b∫

t

f∗2 (s, x)ds < +∞ for a < t < b, x > 0, (11)

then the problem (1), (22), (3) has at least one solution.

Theorem 4. Let in the domain ]a, b[×R the conditions (5) and
[
f2(t, x)− f2(t, y)

]
sgn(x− y) ≥ − `

(t− a)2
|x− y|

be fulfilled, where δ, `0, and ` are positive constants, satisfying the inequality
(7). If, moreover, the conditions (11) hold, then the problem (1), (22), (3)
has one and only one solution.

Note that the condition (7) in Theorems 3 and 4 is unimprovable and it
cannot be replaced by the condition (7′).
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B. Půža and Z. Sokhadze

ON THE WEIGHTED INITIAL PROBLEM FOR SINGULAR
FUNCTIONAL DIFFERENTIAL SYSTEMS

Abstract. For singular functional differential systems, sufficient condi-
tions for solvability and well-posedness of the weighted initial problem are
established.

îâäæñéâ. ïæêàñèŽîñèæ òñêóùæëêŽèñî áæòâîâêùæŽèñîæ ïæïðâéâ-
ĲæïŽåãæï áŽáàâêæèæŽ ûëêæŽêæ ïŽûõæïæ ŽéëùŽêæï ŽéëýïêŽáëĲæïŽ áŽ çë-
îâóðñèëĲæï ïŽçéŽîæïæ ìæîëĲâĲæ.

2010 Mathematics Subject Classification. 34A12, 34K05, 34K10.
Key words and phrases. Singular functional differential system, the
weighted initial problem, solvability, well-posedness.

In a finite interval ]a, b[ we consider the functional differential system

dx(t)
dt

= f(x)(t) (1)

with the weighted initial condition

lim sup
t→a

∥∥φ−1(t)x(t)
∥∥ < +∞. (2)

Here, f : C([a, b];Rn) → Lloc(]a, b];Rn) is a singular operator satisfying
the local Carathéorory conditions, φ(t) = diag

(
ϕ1(t), . . . , ϕn(t)

)
, and ϕi :

[a, b] → R+ (i = 1, . . . , n) are continuous non-decreasing functions such that
ϕi(a) = 0, ϕi(t) > 0 for a < t ≤ b (i = 1, . . . , n).

The initial problem for the singular system (1) has been thoroughly in-
vestigated in the cases, in which f is either the Nemytski’s operator [1]–[6],
or the evolutionary operator [7]–[9]. The weighted initial problem for higher
order singular functional differential equations is studied in [11]–[14]. As for
the weighted singular problem (1), (2), it is not studied well enough. In the
present paper unimprovable in a certain sense conditions are given which,
respectively, guarantee solvability and well-posedness of this problem.

Throughout the paper, the use will be made of the following notation.
R = ]−∞,+∞[ , R+ = [0, +∞[ .
Rn is the space of n-dimensional real column-vectors x = (xi)n

i=1 with
the norm

‖x‖ =
n∑

i=1

|xi|.
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If x = (xi)n
i=1 ∈ Rn, then

[x]+ =
(xi + |xi|

2

)n

i=1
.

r(X) is the spectral radius of the n×n matrix X, and X−1 is the inverse
to X matrix.

diag(x1, . . . , xn) is the diagonal n × n-matrix with diagonal elements
x1, . . . , xn.

If X = diag(x1, . . . , xn), then Sgn(X) =
(
sgn(x1), . . . , sgn(xn)

)
.

Rn
+ and Rn×n

+ are the sets of n-dimensional vectors and n × n-matrices
with nonnegative components.

C([a, b];Rn) is the space of continuous vector functions x : [a, b] → Rn

with the norm
‖x‖C = max

{
‖x(t)‖ : a ≤ t ≤ b

}
.

Cφ([a, b];Rn) is the space of continuous vector functions x : [a, b] → Rn,
satisfying the condition (2), with the norm

‖x‖Cφ
= sup

{∥∥φ−1(t)x(t)
∥∥ : a < t ≤ b

}
.

If x = (xi)n
i=1 ∈ Cφ([a, b];Rn), then

|x|Cφ
=

(‖xi‖Cϕi

)n

i=1
.

L([a, b];Rn) is the space of vector functions with Lebesgue integrable on
[a, b] components.

Lloc(]a, b];Rn) is the space of vector functions whose components are
Lebesgue integrable on [a + ε, b] for an arbitrarily small ε > 0.

Kloc(]a, b] × Rk;Rm) and Kloc(C([a, b];Rk); Lloc(]a, b];Rm)) are the sets
of vector functions g : ]a, b] × Rk → Rm and operators f : C([a, b];Rk) →
Lloc(]a, b];Rm), satisfying the local Carathéodory conditions (see [15]).

An important particular case of the functional differential system (1) is
the differential system with a deviating argument

dx(t)
dt

= g
(
t, x(t), x(τ(t))

)
. (3)

Along with the problem (1), (2), we consider the problem (3), (2). Every-
where below, when the question concerns these problems, it will be assumed
that

f ∈ Kloc

(
C([a, b];Rn); Lloc(]a, b];Rn)

)
, g ∈ Kloc(]a, b]× R2n;Rn),

and τ : [a, b] → [a, b] is a measurable function.
We are mainly interested in the case, where the systems (1) and (3) are

singular, i.e., in the case in which
b∫

a

f∗ρ (t) dt = +∞ and

b∫

a

g∗ρ(t) dt = +∞ for ρ > 0,
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where

f∗ρ (t) = sup
{∥∥f(x)(t)

∥∥ : ‖x‖C ≤ ρ
}

,

g∗ρ(t) = max
{∥∥g(t, x, y)

∥∥ : ‖x‖+ ‖y‖ ≤ ρ
}

.

For an arbitrary positive number δ, we put

χ(t, δ, λ) =

{
0 for a ≤ t < a + δ

λ for t > a + δ
,

and consider the auxiliary initial problem
dx(t)

dt
= χ(t, δ, λ)f(x)(t), (4)

x(a) = 0, (5)

depending on the parameters λ ∈ ]0, 1] and δ > 0.
On the basis of Corollary 2 in [16], the following theorem can be proved.

Theorem 1. Let there exist a positive number ρ0 such that for arbitrary
λ ∈ ]0, 1] and δ > 0 every solution x of the problem (4), (5) admits the
estimate

‖x‖Cφ
≤ ρ0.

Then the problem (1), (2) has at least one solution.

This theorem allows one to get efficient sufficient conditions for the solv-
ability of the problems (1), (2) and (3), (2). In particular, the following
propositions are valid.

Theorem 2. Let there exist a matrix P ∈ Rn×n
+ and a vector function

q : R+ → Rn
+ such that

r(P) < 1, lim
ρ→+∞

‖q(ρ)‖
ρ

= 0, (6)

and for an arbitrary vector function x ∈ Cφ([a, b];Rn) on the interval [a, b]
the inequality

t∫

a

[
sgn(x(s))f(x)(s)

]
+

ds ≤ φ(t)
(
P|x|Cφ

+ q
(‖x‖Cφ

))

is fulfilled. Then the problem (1), (2) has at least one solution.

Corollary 1. Let the functions ϕi (i = 1, . . . , n) be absolutely continuous
and let there exist a set of zero measure I0 ⊂ [a, b], matrices Pk ∈ Rn×n

+ (k =
1, 2) and a vector function q : R+ → Rn

+ with non-decreasing components
such that on the set ([a, b] \ I0)× R2n the inequality

Sgn(x)g(t, x, y) ≤ φ′(t)
(
P1φ

−1(t)|x|+ P2φ
−1(τ(t))|y|

)
+

+ φ′(t)q
(∥∥φ−1(t)|x|+ φ−1(τ(t))|y|

∥∥
)
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is fulfilled. If, moreover, the conditions (6) are fulfilled, where P = P1 +P2,
then the problem (3), (2) has at least one solution.

Remark 1. In Theorem 2 and Corollary 1, the condition r(P) < 1 is
unimprovable and it cannot be replaced by the condition r(P) ≤ 1. The
validity of that fact follows directly from the theorem below.

Theorem 3. Let the functions ϕi (i = 1, . . . , n) be absolutely continuous
and let there exist a set of zero measure I0 ⊂ [a, b], matrices Pk ∈ Rn×n

+

(k = 1, 2) and a vector q0 = (q0i)n
i=1 with positive components q0i (i =

1, . . . , n) such that on the set ([a, b] \ I0)× R2n the inequality

g(t, x, y) ≥ φ′(t)
(
P1φ

−1(t)|x|+ P2φ
−1(τ(t))|y|+ q0

)

is fulfilled. If, moreover, r(P1 + P2) ≥ 1, then the problem (3), (2) has no
solution.

Along with the problem (1), (2), we consider the perturbed problem

dy(t)
dt

= f(y)(t) + h(t), (7)

lim sup
t→a

∥∥φ−1(t)y(t)
∥∥ < +∞, (8)

and introduce the following

Definition. The problem (1), (2) is called well-posed if there exists a
positive number ρ such that for an arbitrary function h ∈ L([a, b];Rn),
satisfying the condition

νφ(h) = sup
{∥∥∥φ−1(t)

t∫

a

|h(s)| ds
∥∥∥ : a < t ≤ b

}
< +∞,

the problem (7), (8) is uniquely solvable and its solution admits the estimate

‖y − x‖Cφ
≤ ρνφ(h),

where x is a solution of the problem (1), (2).

Theorem 4. Let there exist a matrix P ∈ Rn×n
+ such that r(P) < 1, and

for arbitrary vector functions x and y ∈ Cφ([a, b];Rn) in the interval [a, b]
the inequality

t∫

a

[
sgn(y(s))

(
f(x + y)(s)− f(x)(s)

)]
+

ds ≤ φ(t)P|y|Cφ

is fulfilled. If, moreover,

sup
{∥∥∥φ−1(t)

t∫

a

∣∣f(0)(s)
∣∣ ds

∥∥∥ : a < t ≤ b

}
< +∞,

then the problem (1), (2) is well-posed.
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Corollary 2. Let the functions ϕi (i = 1, . . . , n) be absolutely continuous
and let there exist a set of zero measure I0 ⊂ [a, b] and matrices Pk ∈ Rn×n

+

(k = 1, 2) such that r(P1 + P2) < 1, and for any t ∈ [a, b] \ I0, x, x, y and
y ∈ Rn the inequality

sgn(x)
(
g
(
t, x+x, y+y

)−g(t, x, y)
)
≤φ′(t)

(
P1φ

−1(t)|x|+P2φ
−1(τ(t))|y|

)

is fulfilled. If, moreover,

sup
{∥∥∥φ−1(t)

t∫

a

∣∣g(s, 0, 0)
∣∣ ds

∥∥∥ : a < t ≤ b

}
< +∞,

then the problem (3), (2) is well-posed.

From Theorem 3 and Corollary 2 it follows

Corollary 3. Let the functions ϕi (i = 1, . . . , n) be absolutely continuous
and

g(t, x, y) = φ′(t)
(
P1φ

−1(t)|x|+ P2φ
−1(τ(t))|y|+ q0

)
,

where Pk ∈ Rn×n
+ (k = 1, 2), and q0 ∈ Rn

+ is the vector with positive
components. Then the problem (3), (2) is well-posed if and only if

r(P1 + P2) < 1.

Remark 2. According to Corollary 3, the inequality r(P) < 1 (r(P1 +
P2) < 1) in Theorem 4 (in Corollary 2) is unimprovable and it cannot be
replaced by the inequality r(P) ≤ 1 (r(P1 + P2) ≤ 1).
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